Facebook Twitter YouTube LinkedIn iPhone Applications                                                      

 

Magnet Manufacturing Process

 There are several processes for making magnets, but the most common method is called Powder Metallurgy. In this process, a suitable composition is pulverized into fine powder, compacted and heated to cause densification via “liquid phase sintering”. Therefore, these magnets are most often called sintered magnets. Ferrite, SmCo and neo magnets are all made by this method. Unlike ferrite, which is a ceramic material, all of the rare earth magnets are metal alloys. The following description is for these alloy magnets.

Suitable raw materials are melted under vacuum or inert gas in an induction melting furnace. The molten alloy is either poured into a mold, onto a chill plate, or processed in a strip caster – a device that forms a thin, continuous metal strip. These metal “chunks” are crushed and pulverized to form a fine powder ranging from 3 to 7 microns in diameter (the period at the end of this sentence is 615 microns). This very fine powder is chemically reactive, pyrophoric and must be protected from exposure to air or, more specifically, oxygen. The particle size is specified to contain material with one magnetic preferred orientation.

There are several methods for compacting the powder and they all involve aligning the particles so that in the finished part all the magnetic regions are pointing in a prescribed direction. The first method is called axial or transverse pressing. This is where powder is placed into a cavity in a tool on the press and punches enter the tool to compress the powder. Just prior to compaction, an aligning field is applied. The compaction “freezes-in” this alignment. In axial (parallel) pressing, the aligning field is parallel to the direction of compaction. In transverse (perpendicular) pressing, the field is perpendicular to the compaction pressure. Because the small powder particles are elongated in the direction of magnetic alignment, transverse pressing yields better alignment, thus higher energy product. Compacting powder in one of these hydraulic or mechanical presses limits the shape to simple cross-sections that can be pushed out of the die cavity.

A second compaction method is called isostatic pressing wherein a flexible container is filled with powder, the container is sealed, an aligning field is applied, and the container is placed into the isostatic press. Using a fluid, either hydraulic fluid or water, pressure is applied to the outside of the sealed container, compacting it equally on all sides. There are two main advantages to making magnet blocks via isostatic pressing: 1) very large blocks   can be made – frequently up to 100 x 100 x 250 mm – and 2) since pressure is applied equally on all sides, the powder remains in good alignment producing the highest possible energy product. Magnet Block

Pressed parts are packaged in “boats” for loading into a vacuum sintering furnace. The particular temperatures and presence of vacuum or inert gas is specific to the type and grade of magnet being produced. Both rare earth materials are heated to a sintering temperature and allowed to densify. SmCo has the additional requirement of a “solutionizing” treatment after sintering. After quenching to room temperature, both materials are given a lower temperature tempering heat treatment. During sintering, the magnets shrink about 15-20% linearly. When complete the magnets will have a rough surface and only approximate dimensions. They also exhibit no external magnetic field.

Sliced MagnetsSintered magnets will receive some degree of machining which can range from grinding them smooth and parallel, OD or ID grinding, or slicing of block magnets into smaller parts  . The magnet material is both brittle and very hard (Rockwell C 57 to 61) and requires diamond wheels for slicing and diamond or special abrasive wheels for grinding. Slicing can be done with excellent precision often eliminating the need for subsequent grinding. All of these processes must be conducted very carefully to minimize chipping and cracking.

In some cases, the final magnet shape is conducive to processing with a shaped diamond grinding wheel such as arcs and bread loafs  . Product in approximate final shape is fed past the grindingBread Loaf Magnet wheel which provides the precise dimensions. For lower volume manufacturing of these complex shapes, EDM machining is commonly used. Simple two-dimensional profiles EDM faster while more complex shapes using 3-5 axis machines run slower.

Cylindrical parts may be pressed-to-shape, usually axially, or core-drilled  from block stock material. These longer cylinders, either solid or with an ID, can later be sliced to form thin washer-shaped magnets. Core Drilled Magnets

For large volume manufacture, it is usually more economical to make tooling and produce to shape. It depends on the magnet size but discreet orders for 5,000 pieces are greater could be considered large. For short-runs or for specific properties, it may be preferred to machine magnets from block. When pressing-to-shape, material scrap, such as grind swarf, is minimized. Order quantity, part shape, size and complexity will all contribute to the decision as to which manufacturing method is preferable. Delivery time will also affect the decision as making limited quantities from stock blocks is likely faster than ordering tooling for press-to-shape parts. Costing these options is not always straight-forward. It is recommended to contact the vendor and discuss options.

Although intricate magnet shapes can be produced from these alloys, the materials are best suited for more simple shapes. Holes, large chamfers or slots are more costly to produce. Tolerances are more difficult to hold on more complex shapes which are likely to result in flux field variations and potential physical stressing of the part in an assembly.

Machined magnets will have sharp edges which are prone to chipping. Coating around a sharp edge is also problematic. The most common method for reducing the sharpness is a vibratory hone, often called vibratory tumbling and done in an abrasive media. The specified rounding of the edge depends upon subsequent processing and handling requirements but is most often 0.005” to 0.015” radius.

Neo magnets, which are prone to rusting or reacting chemically, are almost always coated. Samarium cobalt is naturally more corrosion resistant than neo, but does, on occasion benefit from coating. The most common protective coatings include dry-sprayed epoxy, e-coat (epoxy), electrolytic nickel, aluminum IVD, and combinations of these coatings. Magnets can also be coated with conversion coatings such as zinc, iron or manganese phosphates and chromates. These are generally adequate for temporary protection and can form an under-layer for epoxy coating or an over layer to enhance protection from aluminum IVD.

After the manufacturing is completed, the magnet requires “charging” to produce an external magnetic field. This can be accomplished in a solenoid – a hollow cylinder into which various magnet sizes and shapes can be placed – or with fixtures designed to impart unique magnetic patterns. It is also possible to magnetize large assemblies to avoid handling and assembling these powerful magnets in their magnetized condition. The magnetizing field requirements are substantial. This, as many other aspects of magnet selection, should be discussed with your magnet vendor.

In some instances magnets will require stabilization or calibration. Stabilization is a process of pre-treating the magnets, in or out of an assembly, so that subsequent use will not result in additional loss of flux output. Calibration is performed to narrow the performance output range of a group of magnets. These processes require treating in an oven at elevated temperature or reverse pulsing in a magnetizer at fields below full knock-down power. There are several factors that affect thermal stabilization and it is important that this process is controlled very carefully to ensure proper final product performance.

This is a simplified description of what goes into making sintered rare earth magnets. Hopefully this has provided an appreciation why lead times and costs can vary widely.

Another problem within industry is product inconsistency among vendors. At one level it might result from a lack of adequately specifying what is required. But it is also important to understand the industry as a whole with respect to magnetic properties and their tolerances.

Today there are several organizations that have or are setting standards for magnetic grades and properties: ASTM (Committee A.06), IEC (60404), several Chinese organizations and the former MMPA. The MMPA (Magnetic Material Producers Association) standards are still available and are the de facto standards for many older products and still used by companies familiar with them. However, many of the recently developed grades are not included in this specification. Even when using the MMPA specifications, tolerances range from +/-5 to +/-10% - greater than required in many modern devices. The IEC has general specifications for neo and SmCo and the ASTM has them under development. The Chinese standards groups are in their infancy, but moving ahead quickly.

We have worked with users that complain about buying a magnet from vendor A that worked, then switched to vendor B to have the magnets not work. Both vendors claim to supply magnets per the drawing. This is possible and suggests that the magnet might require tighter specification or that a key characteristic has not been specified and varies between vendors.

It is also imperative to recognize that physical dimensions and magnetic properties are not independent. For example, a larger magnet produces greater flux output. Flux tolerancing is a combination of variation in magnetic properties and physical size. A magnetic spec of +/-5% combined with a dimensional tolerance of +/- 5% results in a normally distributed variation of about +/-8%.

Minimum specifications that can assist the user in successfully obtaining magnets include (but are not limited to): 
        - Material type and grade name 
        - Br acceptable range 
        - Hk acceptable minimum or, if unknown, acceptable minimum Hci 
        - Reversible temperature coefficients 
        - Total flux output (magnetic moment), acceptable range 
        - Gauss at point(s) adjacent to the magnet and how measured 
        - Stabilization criteria and properties after stabilization 
        - Dimensional tolerances (before and/or after coating)

Magnets can be held to tight tolerances both physically and magnetically. The key is understanding these basics and then working with a supplier whose capabilities meet your needs.

Another common question about neo magnets regards patents or licensed neo. Neo is patented and the existence of these patents requires that magnets sold into or imported into the United States must have been manufactured under license from Hitachi. It extends to magnets that are part of assemblies or finished devices. There are many sources of un-licensed material but the buyer needs to beware that they bear the risk if they use such magnets. Additional information can be found at a link on the Hitachi website home page.

Another frequent question regards conformance to DFARS and ITAR regulations.

ITAR (International Traffic in Arms Regulations) dictates that information and material pertaining to defense and military related technologies may only be shared with US Persons unless authorization from the Department of State is received or a special exemption is used. US Persons (including organizations) can face heavy fines if they have, without authorization or the use of an exemption, provided foreign (non-US) persons with access to ITAR-protected defense articles, services or technical data.

DFARS (Defense Federal Acquisition Regulation Supplement) CFR 252.225.7014 further described under 10 U.S.C. 2533b requires that nickel and cobalt based alloys be obtained from the US or from a “qualifying” country. Links to additional information are on the Arnold home page.

We hope that this helps you understand how magnets are made so we can assist you in your high performance magnet and magnetic assembly needs
.