Magnet FAQs

Steve Constantinides, Director of Technology
Arnold Magnetic Technologies Corporation
February 7, 2013
Each of us has questions about magnetism and magnetic materials. Here are a few questions and answers about magnets as used in motors and sensors, magnets for very low or very high temperatures, differences between a magnetic domain and a magnet particle, raw material cost and why the prices change, will there be enough raw materials, what is the size of the magnet industry, how to calculate the holding force of a magnet, what is permeance coefficient and why it matters and more.
What makes a magnet good?

- Flux density (Br, Residual Induction)
- Energy Product (BHmax)
- Resistance to demagnetization (Hcj)
- Usable temperature range
- Change in magnetization with temperature (RTC)
- Demagnetization (2nd quadrant) curve shape
- Recoil permeability (slightly greater than 1)
- Corrosion resistance (water, salts, gases)
- Physical strength
- Electrical resistivity
- Magnetizing field requirement
- Available sizes, shapes, and manufacturability

Specific requirements depend upon the application

- What are a magnet’s key figures of merit?
- For each application a subset of these characteristics will determine how well the magnet is suited to the application.
- All of these should be considered by both the magnet manufacturer and the magnet user.
Magnetic Properties & Typical Measurement Tools

Magnetic Characteristic

- **\(B_r \)**, Remanent Induction – indicates available flux density of the magnet
- **\(H_{cJ} \)** (or \(H_{ci} \)), Intrinsic Coercivity – indicates the magnet’s resistance to de-magnetization
- **\(BH_{max} \)**, Maximum Energy Product – a figure of merit for how much energy is available for motors and generators
- **Flux**, Measure of magnetic output
- **Field Strength**, Measure of magnetic output (flux density)
- **Reversible Temperature Coefficients**, \((B_r \text{ and } H_{cJ})\) – these indicate how the magnetic characteristics \((B_r \text{ and } H_{cJ})\) change with temperature
- **Field Distribution**, Measure of the distribution of the flux

Magnetic properties and measurement tools:

- **Hysteresisgraph** May also be estimated by Helmholtz Coil
- **Hysteresisgraph** May also be estimated or measured by pulse demagnetization
- **Hysteresisgraph** May also be estimated from Helmholtz measurements
- Helmholtz or Search Coil & Fluxmeter
- • Gaussmeter Hall element or NMR - positional or as part of a fixture (e.g. gap probe)
- • Hysteresisgraph or VSM or SQUID magnetometer
- Gauss probe and x-y-z and rotational stage

- These figures of merit are used to gauge magnetic “quality” and therefore require measurement at one or more points in the supply chain.
- A device that measures magnetic fields is called a magnetometer.
- The most common type of magnetometer is the hysteresigraph.
- Other types of magnetometers are the VSM (vibrating sample magnetometer) and SQUID (semi-conducting quantum interference device).
- Other magnetic field measuring equipment includes gaussmeters, fluxmeters, fluxgate magnetometers, NMR (nuclear magnetic resonance) gaussmeters, and combinations of these with coils and sensors.
• The most common equipment for measuring intrinsic magnetic properties is the hysteresigraph (a.k.a. permeameter).

• The measurement is made in closed magnetic circuit and requires a “regular” geometry where the magnet’s poles are flat, parallel and flush with the faces of the pole caps in the hysteresigraph.

• The use of a Temperature Stage in a hysteresigraph allows properties to be measured at lower and at higher temperatures. Arnold, for example, can measure properties in a hysteresigraph between -40 and 300 °C.

• A VSM can use environmental chambers into which the open circuit magnet is inserted for testing at temperatures ranging from near zero Kelvin to 1000 °C.
• The hysteresigraph provides a complete magnetic circuit with pole pieces that adjust to close the gap with the sample in position.

• A power supply provides current to energize coils producing a large magnetic field. This 10” system can produce 34,000 oersteds in a 0.25” (6.4 mm) gap.

• The “search coil” is typically constructed with 2, 3 or more coils around the magnet opening.

• The “B” coil is constructed closest to and in a closed loop around the opening (and magnet).
 o It measures the B output (induction)

• “H” coil is added outside the “B” coil, around the opening, but does not “close the loop” around the magnet
 o It measures only the H output

• “H” compensating coil is similar to the “H” coil but is electrically connected to the “B” coil in reverse
 o Subtracts the H field from the “B” coil output providing B-H (intrinsic induction).

• Electronics process the analog information from the sensors and provide a graphical as well as digital data output for presentation and analysis.
• For permanent magnets we deal most often with just the second quadrant.
• Most of the key figures of merit for permanent magnet materials are indicated on the chart.
• The maximum energy product can be estimated as shown here from just the Br.
• Conversely, the Br can be estimated when the maximum energy product is known.
• As shown, this material would be considered a straight line (Normal curve) or square loop (Intrinsic curve) material since the Normal curve is straight to the maximum energy point.
Questions

• Permanent magnet key figures of merit

• **Holding force of a magnet**
 • Temperature capabilities of magnets
 • When does permeance coefficient matter?
 • Magnetic domains versus particles
 • Raw material prices versus magnet selling price
 • Magnet R&D: are we due for a blockbuster?

Other questions? e-mail sconstantinides@arnoldmagnetics.com
Holding Force

Affected by:

• Quality of the magnet-steel interface
 – Flatness and uniformity of the surfaces
 – Roughness of the surfaces
 – Surface coating or gap-creators

• Rigidity during pull-off
 – Pull-away at 90° to the plane of the interface
 – Both materials remain rigid under stress to prevent “peel away”

• Localized saturation of the steel

• Non-uniformity of the magnet or assembly creates non-uniform flux and holding force distribution

Most calculations overstate the actual holding force

• The closer to the substrate (steel) the greater the holding force of a magnet or magnet assembly. As the magnet moves away from the steel, the pull is reduced.

• If the steel is painted or coated or covered with a non-magnetic material, this forms a gap which reduces the holding force. A rough surface also reduces the holding force.

• A refrigerator magnet is usually flexible and easy to remove from the refrigerator by peeling it away from the steel by lifting a corner or edge to break the magnetic attraction. Similarly, if a rigid magnet is attached to flexible steel, the steel can more easily peel away from the magnet.

• It is tempting to increase holding force by increasing the strength of the magnet. But when a strong magnet is attached to a thin sheet of steel, it is likely to result in the steel becoming “saturated”. Once the steel is saturated very little additional holding force can be expected.

• If the magnet or steel is irregular – has stronger and weaker areas, the weaker region can pull away first thus causing lower holding strength than might be expected.

• Because of these and other variations, Arnold has avoided offering a simple formula for calculating holding force and encourages FEA followed by thorough testing of the design.
Holding (Breakaway) Force

\[
F = \frac{A \cdot B^2}{2 \cdot C_4}
\]

<table>
<thead>
<tr>
<th>(F)</th>
<th>Newtons</th>
<th>Dynes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>(m^2)</td>
<td>(cm^2)</td>
</tr>
<tr>
<td>(B)</td>
<td>Tesla</td>
<td>Gauss</td>
</tr>
<tr>
<td>(C_4)</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

\[
F = k \cdot A \cdot B^2
\]

<table>
<thead>
<tr>
<th>(F)</th>
<th>Pounds (force)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k)</td>
<td>0.577</td>
</tr>
<tr>
<td>(B)</td>
<td>kG</td>
</tr>
<tr>
<td>(A)</td>
<td>in(^2)</td>
</tr>
</tbody>
</table>

- But in the event you wish to know...
- These are two versions of the same formula for holding force, one in cgs & SI and one in English units.
- “\(B \)” is the induction, in gauss (or Tesla), at the contact point between the magnet or magnetic assembly and the substrate (steel).
- “\(A \)” is the cross-sectional area of contact between magnet (or magnetic assembly) and the steel.
- \(C_4 \) and \(k \) are constants.
• Because of the complications associated with holding force and because pull at a distance is so often useful, it is more common to find charts showing attractive force as a function of gap between magnet and steel for a limited number of magnet configurations.

• In a design application, the engineering group might be well-advised to generate such a chart for the application and then design a margin of safety by testing imperfect assemblages.
• Flux from the disk-shaped ferrite magnet is channeled from the pole at the top to the metal plate and then to the magnetic pole at the bottom of this illustration.
• Holding force derives from the fact that the field is “conducted” more easily in the steel than in the air.

• These illustrations exemplify two types of holding/latching devices.
• The top left illustration is of a cross-section of a “pot magnet.”
• Magnets of modest strength can hold with great force when the field is concentrated in this manner.
• The holding force diminishes rapidly as the steel plate is separated from the magnet assembly and holding force is greatly affected by the flatness of the steel plate – the fit between pot magnet and substrate.
• If the steel plate is too thin to carry all the flux, the holding force will also be diminished.
• These assemblies often include a hole in the center of the top for fastening attachments and they use a doughnut-shaped magnet.
• Applications include roof-mount antennas for cars.
• Devices based on rectangular shaped magnets are common for use in cabinet latches.
• The magnet is protected from chipping by being recessed from the contact.
• The steel flux concentrators are loosely held allowing them to adjust for good contact with the striker plate.
Our World Touches Your World Every Day...

Holding Magnets: Flat and/or Flexible

- The creation of multiple adjacent strips of alternate magnet orientation forms extended regions of opportunity for flux to travel through steel rather than air.
- Holding force is a function of Poles per Inch and distance from the steel plate.
- This is the principle behind Flexmag’s Ad Specialty flexible magnets and Plastiform’s commercial products.

Flexible ferrite magnets are commonly used in advertising such as in “refrigerator magnets” and are produced in various thickness and pole spacing (see next slides).
The “throw” of the magnetic field is the distance from the magnet exhibiting high magnetic field strength. Poles that are spaced more widely have greater throw and will attract more strongly from a distance.

But… closer pole spacing provides greater holding force when in contact with a steel plate.

- In these illustrations, the flexible magnet has a steel backing to assist the magnetic return path and raise the holding strength of the magnet.
- As one moves away from the surface of a magnet assemblage, the strength of the magnetic field diminishes.
- When the poles are spaced close together the field drops off quickly (top illustration). Conversely, when they are spaced further apart, the field is stronger at large distances from the magnet surface (bottom illustration).
- The top magnet here has superior holding force when directly in contact with steel. The bottom magnet has greater holding power as the gap between magnet and steel increases.
- The overall holding strength is a function of many things among which is the total length of the lines representing the joint (neutral zone) between north and south poles. Each of these joints contributes to the holding force.
Using magnet viewing paper, we can see the magnetic pole structure. The light colored lines represent the neutral zone between north and south poles.

- These refrigerator magnets are made from extruded or calendered ferrite in either a polyethylene or rubber matrix.
- Magnetic poles are impressed on the material to form continuous stripes of north and south pole regions.
- The holding force is created by the interaction of these adjacent poles and is proportional to the total length of the lines formed by the poles.
- The magnet with closer pole spacing (on the right) may have greater holding force due to more lines per inch, thus greater total line length between poles, but the magnet on the left (above the Arnold name) will have greater throw and be better at holding up more sheets of paper on the refrigerator.
- Green magnetic viewing film shows the neutral plane between poles as a light colored line.
- It also shows Arnold’s ability to “code” the strip with field reversals.
Questions

- Permanent magnet key figures of merit
- Holding force of a magnet
- **Temperature capabilities of magnets**
 - When does permeance coefficient matter?
 - Magnetic domains versus particles
 - Raw material prices versus magnet selling price
 - Magnet R&D: are we due for a blockbuster?

Other questions? e-mail sconstantinides@arnoldmagnetics.com
Temperature Ratings of Magnets

Maximum (and minimum) usable temperatures are determined by:

• Curie (Tc) and Neel (Tn) Temperatures
 – The temperature above which a ferromagnet (Tc) or ferrimagnet (Tn) becomes paramagnetic; domains realign randomly

• Decrease of Intrinsic Coercivity (and Hk) to such a low value as to be insufficient to withstand demagnetization

• Excessive decrease in flux output due to temperature change
 – Example: Ferrite loses ~25% of flux output going from 20 to 150 °C

• Spin re-orientation
 – Example: Neo below 140 K

• Decomposition of the magnetic phase
 – Example: SmFeN >450 °C

• The maximum (or minimum) use temperature of a magnet depends on at least these issues.
A key characteristic in selecting the best magnet is the temperature range of the application.

We note here that both Neo and ferrite magnets have a more limited useful temperature range.

Neo is not naturally a high temperature magnet material - we try to make it work at high temperatures by substituting dysprosium for some of the neodymium.

Ferrite can be theoretically used to over 350 °C. However, even by 150 °C, it loses 25% of its flux output and so that is a practical limit for motor applications.
• This is a typical manufacturers chart of second quadrant curves as a function of temperature.
• N42UH is rated to 180 °C, but I’ve shown performance to 220 °C to exemplify the diminishing Hci.
• Setting the temperature range over which Beta is calculated is important as can be demonstrated by this illustration.
• The Reversible Temperature Coefficient decreases as the range is expanded from 20 - 100 °C to 20 - 150 °C as indicated by the slope of the red dashed line versus the indigo line.
• The actual Beta’s are:
 ➢ 20 to 100: -0.325% per °C
 ➢ 20 to 150: -0.281% per °C

We quantify the change in magnetic output with changing temperatures as the reversible temperature coefficients of induction and (intrinsic) coercivity variously referred to as RTC (reversible temperature coefficient) of Br or Hci, alpha (RTC Br), beta (RTC Hci), or as in Europe, alpha Br and alpha Hcj. Very confusing, so let’s just use “RTC”.

One method utilized to calculate RTC with accuracy is to make numerous measurements, on multiple magnets where possible, and to plot the data.

A regression analysis of the data provides the ability to calculate change in output between any two temperatures within the tested range – and with some risk, extrapolated outside the tested range.

One can see from this illustration how the same magnet can be seen to have two (or more) reversible temperature coefficients of coercivity by merely adjusting the temperature range over which they are calculated and specified.
Questions

- Permanent magnet key figures of merit
- Holding force of a magnet
- Temperature capabilities of magnets

When does permeance coefficient matter?

- Magnetic domains versus particles
- Raw material prices versus magnet selling price
- Magnet R&D: are we due for a blockbuster?

Other questions? e-mail sconstantinides@arnoldmagnetics.com
A magnetic circuit is a combination of a magnet and a soft magnetic material, such as iron to guide the flux, and an air gap.

Within every permanent magnet is a demagnetizing stress which is a function of the geometry of the magnet in the magnetic circuit.

This stress determines what we call a magnet’s permeance coefficient.

It is often calculated...

- It is calculated from the ratio of the length of a magnetic circuit to its air gap
- Also called the operating slope or B/H or load line
- Intersection of the operating slope with the normal curve produces the Operating Point
- Often it is calculated with only the magnet present, i.e. no other ferromagnetic material present (open circuit)

A magnet’s permeance coefficient is also called its operating slope or its B/H.

It is strictly a function of the geometry of the magnetic circuit.
How to Calculate the Permeance Coefficient

• B/H is related to N (Nb or Nm)
 \[
 \frac{B_d}{\mu_0 H_d} = 1 - \frac{1}{N}
 \]

• Nb = Ballistic Demagnetizing Factor

• Nm = Magnetometric Demagnetizing Factor

• FEMM
 \[
 N = \frac{4}{4 + 9 (l/d)}
 \]
 (D. Meeker, www.femm.info/Archives/misc/BarMagnet.pdf)

• Going back to 1920, Evershed calculated a quantity called the ballistic demagnetizing factor. It’s related to the permeance coefficient by the equation shown.
• Evershed’s value of N is referred to as the ballistic demagnetizing factor, Nb.
• With the discovery and production of ferrite magnets, R. I. Joseph calculated a magnetometric demagnetizing factor, Nm, based on the premise that each localized region within the magnet was identical to other regions.
• While working on developing FEMM, a free finite element analysis program, David Meeker came up with a very simple formula closely relating N to the length-to-diameter ratio of a magnet.
Comparison of Nb, Nm and Meeker Pc

<table>
<thead>
<tr>
<th>Magnet#</th>
<th>Description</th>
<th>Magnetic Length</th>
<th>Diameter</th>
<th>L/D</th>
<th>Bd/Hd</th>
<th>Joseph</th>
<th>Meeker</th>
<th>Evershed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SmCo</td>
<td>0.7525</td>
<td>0.3755</td>
<td>2.00</td>
<td>9.45</td>
<td>4.50</td>
<td>4.50</td>
<td>8.90</td>
</tr>
<tr>
<td>2</td>
<td>Neo</td>
<td>0.3935</td>
<td>0.7855</td>
<td>0.50</td>
<td>1.29</td>
<td>1.11</td>
<td>1.13</td>
<td>1.41</td>
</tr>
<tr>
<td>3</td>
<td>Neo stacked - 1</td>
<td>0.3757</td>
<td>0.2525</td>
<td>1.49</td>
<td>6.18</td>
<td>3.32</td>
<td>3.36</td>
<td>5.43</td>
</tr>
<tr>
<td>4</td>
<td>Neo stacked - 2</td>
<td>0.7514</td>
<td>0.2525</td>
<td>2.98</td>
<td>13.3</td>
<td>6.8</td>
<td>6.7</td>
<td>15.7</td>
</tr>
<tr>
<td>5</td>
<td>Neo stacked - 4</td>
<td>1.5028</td>
<td>0.2525</td>
<td>5.95</td>
<td>28.9</td>
<td>13.8</td>
<td>13.5</td>
<td>42.0</td>
</tr>
<tr>
<td>6</td>
<td>Neo stacked - 6</td>
<td>2.2541</td>
<td>0.2525</td>
<td>8.93</td>
<td>50.3</td>
<td>20.7</td>
<td>20.2</td>
<td>78.0</td>
</tr>
</tbody>
</table>

Bd/Hd is calculated from measurements

Joseph = Pc calculated from the Magnetometric demagnetizing factor (1965-66)

Meeker = Pc calculated from the demag factor using David Meeker’s arithmetic formula

Evershed = spherical pole model the formula for which is widely published including in Parker & Studders

Additional references by Benz & Martin, Du-Xing Chen, E. Pardo, J. A. Brug, R. B. Goldfarb, A. Sanchez, M. Kobayashi, A. Aharoni and others

- However, when making measurements and comparing values of Nb, Nm and Meeker’s calculations, I note no agreement except approximate between Meeker and Joseph.
- Joseph’s equations are commonly used in FEA software.
- Laboratory measurement results generally fall between Evershed’s and Joseph’s values.
• Why they are important is illustrated in the following slides.
• When we calculate Nb or Nm and then B/H, we can plot the B/H curve as a line on the demag curve.
• Where it intersects the Normal curve is the Operating Point – the red dot.
• If a vertical line is extended both downward to the H axis and upward to the Intrinsic curve, we find a second intersection, the blue dot, on the Intrinsic curve.
• The slope of the line between the blue dot and the origin is called the Intrinsic Permeance Coefficient (Pci) and in the CGS system is the value of Pc + 1.
• It is common practice to ignore the negative sign of the slopes.
• If we have a magnet with a B/H equal to 0.5, represented by the plum-colored dashed line, the Normal Operating point is at point “A”.

• At 180 °C, the operating point is at point “C” and is around the knee of the Normal curve. If allowed to rebound to closed circuit, we see a Br point at “D”, well below point “F” at 10,500 gauss. Thus there has been considerable irreversible loss of flux.

• If instead, the magnet has an operating slope (B/H) of 1.6 (green dashed line), then the operating point at 180 °C would be at point “E” and the rebound would be to point “F” at 180 °C with virtually no loss of flux.

• When we “go around the knee of the Normal (or Intrinsic) curve, we expect to see irreversible loss of flux output.
• When we apply a reverse (demagnetizing) magnetic field, we need to shift to the Intrinsic curve – it’s easier than mathematic adjustments.

• Here we show a Pci (B/H) of ~2.6 (Pc of 1.6 + 1) – the dashed green line – with an Intrinsic operating point at “C” at 140 °C.

• When the negative field is applied, the origin is shifted to point “E” and a line drawn with the slope of the original Pci intersects the Intrinsic curve at point “A”, the Intrinsic Operating Point at 140 °C.

• The original Operating Point, “C”, shows very minor irreversible loss of flux – it rebounds in closed circuit to point “D”, just barely below the original Br.

• However, the Operating Point at “A” shows considerable irreversible loss. When the negative field is removed, it rebounds in closed circuit to point “B”.

• The amount of flux loss is “D” minus “B”.

• An understanding of Permeance Coefficient is essential to proper use of magnets in motors, sensors and actuators.
Questions

- Permanent magnet key figures of merit
- Holding force of a magnet
- Temperature capabilities of magnets
- When does permeance coefficient matter?

Magnetic domains versus particles

- Raw material prices versus magnet selling price
- Magnet R&D: are we due for a blockbuster?

Other questions? e-mail sconstantinides@arnoldmagnetics.com
Magnetic Domains versus Particles

DOMAINS

“A domain is a small volume of a substance that is spontaneously magnetized in one direction. In bulk a piece of magnetic material contains many domains magnetized in different directions. The material is demagnetized if these directions are completely random for the material as a whole, so that its net magnetization is zero.”

M. McCaig, Permanent Magnets in Theory and Practice, p.25

Recall that a magnetic field is a vector having both magnitude and direction.

Figure 3.2 Exploded assembly of ferromagnetic volume.

R.J. Parker, Advances in Permanent Magnetism, p.47
Magnetic Domains

Image of the polished surface of a Nd-Fe-B sintered magnet in the Kerr microscope. The magnet is in the virgin state, and the oriented Nd$_2$Fe$_{14}$B crystallites are unmagnetized multidomains. The domain contrast is due to Kerr rotation observed between crossed polarizers. (Photo courtesy of H. Kronmüller.)

J.M.D. Coey, Magnetism and Magnetic Materials, Cambridge University Press, p.357

- It is possible to see the domain structure by viewing polished material under magnification such as in this image at about 400x.
- The technique is common and has its own name, MOKE.
Let us define what is meant by anisotropic versus isotropic and oriented versus unoriented.

Most grains of magnetic material have an “easy axis of magnetization”. This means that the crystalline material magnetizes in one orientation only. An example is the ferrite crystal shown above. In technical jargon, this is referred to as “uniaxial crystalline anisotropy”.

If the grains of magnetic material are not oriented during the manufacture of the magnet, when the magnetic material is subsequently “charged” (magnetized), it will be weaker than it could potentially be, but it can be magnetized in any direction.

If the grains are oriented during manufacture, then the magnet will have a net magnetic field in only that orientation.

For any material, if the anisotropic magnetic powder is well aligned during manufacturing it will have the greatest possible magnetic output for that material type.
• This SEM photomicrograph of bonded ferrite shows the particle morphology and alignment.

• Although the particles are not perfect hexagonal platelets, they are generally flat and aligned well, much like this New England stone wall.
Questions

• Permanent magnet key figures of merit
• Holding force of a magnet
• Temperature capabilities of magnets
• When does permeance coefficient matter?
• Magnetic domains versus particles

Raw material prices versus magnet selling price

• Magnet R&D: are we due for a blockbuster?

Other questions? e-mail sconstantinides@arnoldmagnetics.com
What are the rare earth magnets?

<table>
<thead>
<tr>
<th>Percent by weight of commercially produced rare earth magnets</th>
</tr>
</thead>
<tbody>
<tr>
<td>4% SmCo<sub>5</sub></td>
</tr>
<tr>
<td>Sintered (powder metallurgy)</td>
</tr>
<tr>
<td>95% Neo (neodymium iron boron)</td>
</tr>
<tr>
<td>Powder for bonded magnets: compression, extruded, injection molded</td>
</tr>
<tr>
<td>Sintered (powder metallurgy)</td>
</tr>
<tr>
<td>Hot rolled (no longer made): Cu-modified composition; Seiko-Epson</td>
</tr>
<tr>
<td>Die-upset / forged, fully dense: Magnequench MQ-3 process (original and modified); Daido Electronics</td>
</tr>
<tr>
<td>1% SmFeN</td>
</tr>
<tr>
<td>Powder metallurgy process resulting in a fine powder suitable for bonded magnets</td>
</tr>
<tr>
<td>Unstable above ~450 °C – no known method for achieving a fully dense magnet</td>
</tr>
</tbody>
</table>

- Since 2010, a major topic of interest has been pricing and availability of rare earths and rare earth magnets.
- The materials shown here comprise the family of Rare Earth magnets.
- Although SmCo magnets are superior for elevated temperature applications, the combination of greater material availability and historically lower cost has propelled Neo magnets into a dominant position for all but the most demanding applications.
- For Neo to perform successfully at elevated temperature, however, requires substituting heavy rare earth (especially dysprosium and sometimes terbium) for up to 1/3 of the total rare earth content.
- Of late, the supply of dysprosium has not been adequate resulting in high material prices and likelihood of a continuing long-term shortage.
- SmFeN is an excellent material except that 1) it decomposes at a fairly low temperature preventing consolidation to full density and 2) because it must be used as a bonded magnet, maximum energy product is limited by the dilution with a non-magnetic binder.
• Rare earth materials have experienced price inflation and market disruption.
• Notes on the chart indicate the main price drivers.
• When prices became too high, users of rare earth magnets designed away from them and are now slow to return exacerbating the oversupply of rare earth elements (REEs).
• As much as rare earth prices have come down, they are still several times higher than in previous years.

N.B.: see more recent papers & presentations for up-to-date pricing information.
Rare Earth Magnet (Relative) Material Costs

Material Prices as of 3-Jan-13

<table>
<thead>
<tr>
<th>SmCo</th>
<th>NdFeB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
<td>Price (USD/kg)</td>
</tr>
<tr>
<td>Sm</td>
<td>$48.50</td>
</tr>
<tr>
<td>Co</td>
<td>$23.92</td>
</tr>
<tr>
<td>Fe</td>
<td>$1.05</td>
</tr>
<tr>
<td>Zr</td>
<td>$40.00</td>
</tr>
<tr>
<td>Cu</td>
<td>$8.04</td>
</tr>
<tr>
<td>Nd</td>
<td>$95.00</td>
</tr>
<tr>
<td>Dy</td>
<td>$850.00</td>
</tr>
<tr>
<td>B</td>
<td>$0.90</td>
</tr>
</tbody>
</table>

Raw Material Price per kg

<table>
<thead>
<tr>
<th>Element</th>
<th>Price (USD/kg)</th>
<th>1:5</th>
<th>2:17</th>
<th>M</th>
<th>H</th>
<th>SH</th>
<th>UH</th>
<th>EH</th>
<th>AH</th>
</tr>
</thead>
<tbody>
<tr>
<td>SmCo</td>
<td>$32.28</td>
<td></td>
<td></td>
<td>$27.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NdFeB</td>
<td>$31.13</td>
<td></td>
<td></td>
<td>$41.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SmCo</td>
<td>$29.39</td>
<td></td>
<td></td>
<td>$31.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NdFeB</td>
<td>$31.44</td>
<td></td>
<td></td>
<td>$41.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SmCo</td>
<td>$25.78</td>
<td></td>
<td></td>
<td>$22.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NdFeB</td>
<td>$23.35</td>
<td></td>
<td></td>
<td>$31.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

China Export Rare Earth Prices

Domestic China Rare Earth Prices

- Even with dropping raw material prices, there is another problem – the differential in pricing between domestic Chinese material and export material prices.
- This is the cause of a WTO complaint lead by the governments of the USA, Europe and Japan.
- Differential raw material pricing provides a cost advantage to companies located in China, encouraging additional western companies to relocate product manufacturing to China.
• This is my attempt to forecast relative magnet prices going forward based on costs over the past 9 years.

• It assumes that Neo magnet pricing will bottom out by January 2013 and rise slowly going forward.

• It also shows a slow continual uptick in SmCo magnet pricing.

• Dashed lines provide pessimistic and optimistic pricing for Neo as well as a likely middle value.

N.B.: There continues to be an excess of supply of rare earths through August 2015, resulting in depressed raw material and magnet prices at levels near the lower boundary pricing on the chart.
Questions

- Permanent magnet key figures of merit
- Holding force of a magnet
- Temperature capabilities of magnets
- When does permeance coefficient matter?
- Magnetic domains versus particles
- Raw material prices versus magnet selling price

Magnet R&D: are we due for a blockbuster?

Other questions? e-mail sconstantinides@arnoldmagnetics.com
• Let’s work with the periodic table to see what elements are likely candidates for use in magnetic materials.
• I will use a method similar to that of Bill McCallum of Ames Laboratory who kindly shared his notes with me a year or so ago.
• And I should point out that this table was obtained from Vertex in Excel format. It has been modified to simplify the information in each cell. Go to www.vertex42.com for this and other useful spreadsheets and documents.
• This first table lists all of the elements… so let’s start thinning the list with elements that won’t be used.
Our World Touches Your World Every Day…

- This is the table after elements have been removed – those that are synthetic (man-made), radioactive, inert, toxic, truly rare, rock-forming and hydrogen.
- So we’re down from 90 naturally occurring elements to 36 – still a lot to work with.
- Let’s ask a question: what elements have been used over the last 150 years to make magnetic materials?
Elements in Existing Magnetic Materials

<table>
<thead>
<tr>
<th>Soft Magnetic Materials</th>
<th>Major constituents</th>
<th>Minor constituents</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron</td>
<td>Fe</td>
<td></td>
<td>Low carbon mild steel</td>
</tr>
<tr>
<td>Silicon Steel</td>
<td>Fe</td>
<td>Si</td>
<td>Si at 2.5 to 6%</td>
</tr>
<tr>
<td>Nickel-Iron</td>
<td>Fe Ni</td>
<td>Ni at 35 to 45%</td>
<td></td>
</tr>
<tr>
<td>Moly Permalloy</td>
<td>Ni Fe</td>
<td>Mo</td>
<td>Ni at 75%, Mo at 4%, bal. Fe</td>
</tr>
<tr>
<td>Iron-Cobalt</td>
<td>Fe Co</td>
<td>V</td>
<td>23 to 52% Co</td>
</tr>
<tr>
<td>Soft Ferrite</td>
<td>Fe Mn Ni Zn O</td>
<td></td>
<td>Amorphous and nanocrystalline</td>
</tr>
<tr>
<td>Metallic Glasses</td>
<td>Fe Co Ni B Si P</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Permanent Magnets

<table>
<thead>
<tr>
<th>Co-Steels</th>
<th>Fe Co</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alnico</td>
<td>Fe Ni Co Al Cu Ti Si</td>
</tr>
<tr>
<td>Platinum Cobalt</td>
<td>Pt Co</td>
</tr>
<tr>
<td>Hard Ferrites</td>
<td>Fe Sr</td>
</tr>
<tr>
<td>SmCo</td>
<td>Co Sm (Gd) Fe Cu Zr</td>
</tr>
<tr>
<td>Neodymium-iron-boron</td>
<td>Fe Nd Dy (Y) B Co Cu Ga Al Nb</td>
</tr>
<tr>
<td>Centum-iron-boron</td>
<td>Fe Nd Ce B</td>
</tr>
<tr>
<td>SmFeNi</td>
<td>Fe Sm N</td>
</tr>
<tr>
<td>MnBi</td>
<td>Mn Bi</td>
</tr>
<tr>
<td>MnAl(C)</td>
<td>Mn Al C</td>
</tr>
</tbody>
</table>

- This list contains most common magnetic materials and the elements used to make them.
- Take a good look and then move to the next slide showing them on the periodic table.
They are, with three exceptions, the same elements we selected by narrowing the list of all elements.

The exceptions:

1) platinum-cobalt was the first high performance magnet. It was used to make watch drive motor magnets whose very small size compensated for the high material cost.

2) Germanium and Tin have not been used (except as trace elements), at least to my knowledge, in commercial magnets, but like aluminum and gallium might make suitable modifying constituents to assist sintering or phase formation.

Since these materials have been used for decades in the development of magnetic materials, the most likely new material will come from either exchange-coupled materials or a modified structure.
The Millennial Magnet Stakes

- Exchange Hardening – 2:1 against
- New Phase – 5:1 against
- Strong Ferromagnet – 12:1 against
- Heavy Lanthanide – 20:1 against
- Actinide – 40:1 against

Source: Michael Coey and Ralph Skomski, CEA M c.1994

Though we should try, it may not be possible to develop a superior permanent magnet with no rare earth.

Success should be recognized for significant reduction in the rare earth content.

Actinide magnets are not recommended as the constituents are hazardous materials.

Exchange-coupled magnet materials represent the best chance for a new, high-performance magnetic material with an entirely new material in at second place.
Any discussion of commercial viability has to include the premise that the raw materials are readily available and at a reasonable cost.

As a primary ingredient, it’s highly recommended to select more common materials such as those above the green dashed line.

Minor ingredients may be from between the green and red lines.

But elements from below the dashed red line should be avoided except in the very smallest additions.
R&D Activities (U.S.)

Approaches
- Enhanced Alnico
- New Magnetic Phase
- Nanotechnology forming
- Exchange Coupling
- Diffusion Coating
- Layering Techniques
- Core-Shell structures

ARPA-E REACT project and others, funded by DOE, EERE and ARPA-E, are focused on finding alternative high performance magnet materials to relieve pressure on rare earth supplies and to facilitate a more robust supply chain for energy critical elements.

- Research activities into the next great magnetic material do include a bottoms-up design approach – a search for a new magnetic phase.
- Other thoughts related to a good magnetic material…
- To obtain full benefit from the magnetic material, it should be fully dense (no dilution of the magnetic phase), it should have uniaxial crystalline anisotropy (for maximizing magnetic saturation), and magnetic domains should be oriented within the bulk structure.
- Raw materials need to be widely available and at reasonable cost.
- Raw materials and the finished composition must not be toxic or environmentally hazardous.
- The material should be easily and safely manufacturable.
- The magnets should be recyclable.
• Looking at a price chart for magnetic materials, the highlighted region shows target price and energy for new materials.

• Permanent magnet R&D is focused on one or two objectives: increasing magnetic output and/or reducing the product cost all while using readily available materials.
Other questions? e-mail sconstantinides@arnoldmagnetics.com