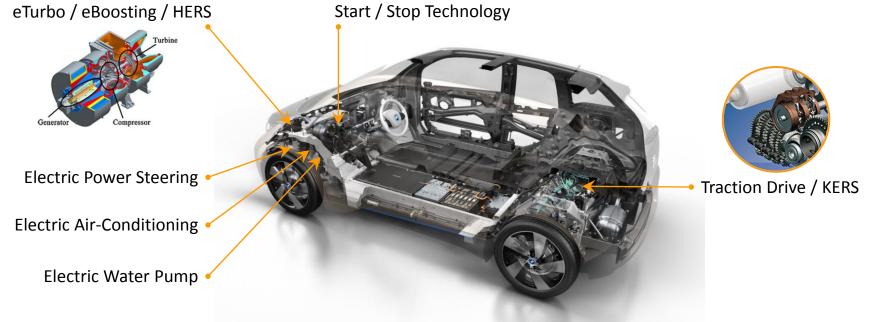


Arnold Magnetic Technologies

Where Air Meets Ground: High Performance Materials Converge on the Horizon

Aaron Williams, Engineering Manager


Motor Applications — *Aerospace*

Many electrical motor/generator technologies already in place on airframes

Electric Assistance Applications

Numerous electric assist applications to increase vehicle efficiency

What Motor Topology to Choose?

Induction Machine

Switched Reluctance

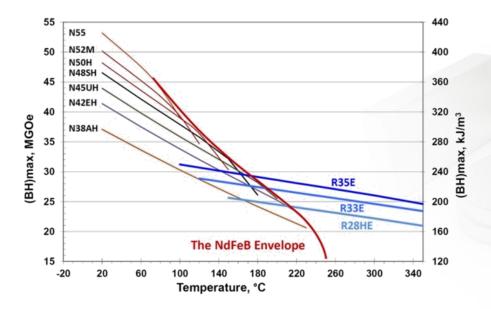
Aerospace has main focus on motor efficiency

Permanent Magnet

Motor Technologies — Advantages/Disadvantages

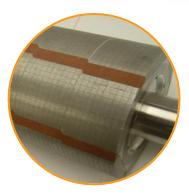
Induction Machine		Surface PM		Switched Reluctance	
Advantages	Disadvantages	Advantages	Disadvantages	Advantages	Disadvantages
High speeds	Rotor losses (cooling)	Energy efficiency	Permanent magnet temp. effects	High speeds	Acoustic noise
Simple construction	Less constant power speed range	Highest torque/inertia ratio	Magnet retention	Simple rotor construction	Complex control
High torque/inertia ratio	Low power density	Highest torque density	Iron Losses	Low rotor losses at low speeds	Rotor position sensor required
High torque density	Lower efficiency over op range	Good torque control	Magnet costs	Low cost	Small air gap
Low cost		Very low rotor losses	Excitation during a winding fault	No permanent excitation	Special drive topology
No permanent excitation		Common drive topology			Motor/drive control match required
Common drive topology		Simple construction			High windage

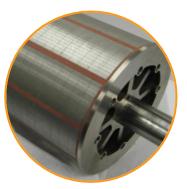
Smaller. Faster. Hotter Design Challenges for the Emerging Systems


- Thermal Management
- Power Density
- Higher Speeds (100K+ RPM)
- Weight Reduction
- Secure Supply Chain
- Cost

Motor Technologies have overcome these challenges in Aerospace

SmCo Untapped Potential




Advancements in **SmCo magnets** improve power density at temperature

Laminated Magnet Process

- Further reduction of eddy currents (heat) for increased efficiency (Joule Loss Reduction)
- Thin insulating gap (<20 um)
 - Maximum energy density for applications

Magnet Retention at High Speeds

Composite Sleeving

- Wound in place or pressed on sleeve
- Inconel or Stainless
 Steel also available
- Reduced Joule losses

Precision fit end ring to lock in magnets

Dynamically balanced

SmCo Magnets

- Precision fabricated
- OD ground
- Magnetically stabilized

Speeds in excess of 150K RPM 225°C ⁺ Operating Temperatures

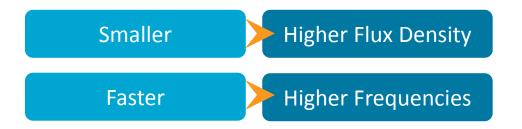
Precision Thin Metals

Silicon Steels for High Frequency Applications

- Arnon Non Oriented (0.18 mm & 0.13 mm)
- Grain Oriented (0.03 mm 0.15 mm)

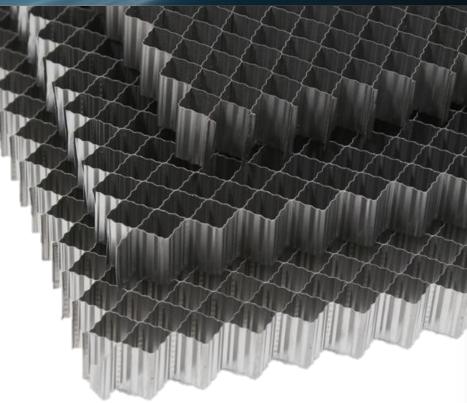
Popular Materials Available

- Titanium & Its Alloys
- Arnokrome (FeCrCo)
- Nickel & Its Alloys
- Nickel Irons & Soft Magnetics


Exceptionally thin strip and coil

Materials to Reduce Iron Losses

- Ultra thin (0.005" 0.007") non-oriented 3% silicon steel
 - Reduces eddy current losses and heat rise in the stator
 - C5 insulation coating


Thinner laminations to reduce eddy currents

Titanium for Lightweighting

- Used for aerospace surfaces and structures
- High overall strength, corrosion resistance, and ductile
- Lightweight, durable, and reliable under harsh temperature and chemical conditions

Summary

PM machines dominate high performance aerospace applications due to a higher motor efficiency. This technology will continue to push into the automotive landscape as motor efficiency becomes more critical.