

- Magnetic materials range from soft (not retaining its own magnetic field) to hard (retaining a field in the absence of external forces).
- Cobalt, as one of the three naturally ferromagnetic elements, has played a crucial role in the development of magnetic materials
- And remains, today, essential to some of the highest performing materials both soft and hard.

• Let's begin with a brief explanation of what is meant by soft, semi-hard and hard when speaking of magnetic characteristics.

	5		
		Units	
Symbol	Name	CGS, SI	What it means
Ms, Js	Saturation Magnetization	Gauss, Tesla	Maximum induced magnetic contribution from the magnet
Br	Residual Induction	Gauss, Tesla	Net external field remaining due to the magnet after externally applied fields have been removed
(BH) _{max}	Maximum Energy Product	MGOe, kJ/m ³	Maximum product of B and H along the Normal curve
Нсв	(Normal) Coercivity		Value of H on the hysteresis loop where B = 0
H _{cJ}	Intrinsic Coercivity		Value of H on the hysteresis loop where B-H = 0
Jinit	Initial Permeability	(none)	Slope of the hysteresis loop as H is raised from 0 to a small positive value
Umax	Maximum Permeability	(none)	Maximum slope of a line drawn from the origin and tangent to the (Normal) hysteresis curve in the first quadrant
D	Resistivity	µOhm•cm	Resistance to flow of electric current; inverse of conductivity

- These are most of the important characteristics that magnetic materials exhibit.
- To specify and use the materials we need to measure them and understand how they affect the devices in which they are used.
- All but a few of the these are derived from the material's hysteresis loop.
- The hysteresis loop is a graph showing the relationship between the strength of a magnetic field which is applied to a magnetic material plotted versus the resultant (induced) field in the material.

- The H axis is the applied field; the B axis is the induced field.
- The applied field is included in the measurement of the induced field it is not possible to separate them at the measurement.
- However, it is possible to separately measure the applied field and subtract it from the combined field.
- So we have two curves: a black curve representing the combined applied and induced fields and a blue curve produced by subtracting the applied field and just showing the induced field.
- The combined curve is called the "Normal" curve; the induced-field-only curve is called the Intrinsic curve.
- The curve is plotted in both positive and negative values of H and B thus producing all four quadrants.

• Soft magnetic materials use information gleaned from the 1st quadrant such as initial and maximum permeabilities and magnetic saturation.

- Soft magnetic materials also use information from all four quadrants.
- Typical uses for soft materials are transformers, motor laminations and inductors.
- In all these cases, the magnetic material is induced to carry a magnetic field (flux) in varying polarity: first north one way and south the other then changing to a new magnetic orientation.
- This changing polarity is represented by the material operating at different points around the hysteresis loop.
- The external energy required to "drive" the material through the loop is proportional to the area within the loop.
- The area is largely controlled by the value of HcB, so smaller HcB is beneficial to achieving lower energy loss in devices.
- Permeability describes how easily the material can be magnetized.
- The saturation magnetization tells us the maximum magnetic strength.

Compositions and Properties													
	Composition (%), Fe bal. B _s H _{cB} µ _{init} µ _{max} R												
	Material	Co	Cr	Ni	Мо	V	Cu	Other	G	Oe			µ-ohm•ci
	Low carbon steel (M-19)								19,000	0.2-0.5	300	10,000	47
	Iron-Silicon (Si-Fe)							3 - 6	19,700	0.6	350	50,000	50
	Deltamax			50					16,000	0.04-0.16	500	100,000	45
	Alloy 4750			48					15,500	0.02-0.10	7,000	100,000	45
	Mu Metal		2	77			5		7,500	0.01-0.03	20,000	~100,000	60
ials	Supermalloy			79	5				7,800	~0.005	60,000	800,000	65
ater	Perminvar (7-70)	7		70					12,500	0.6	850	4,000	16
ŝ	Kovar	17		29					12,000			3,000	49
etic	Perminvar (45-25)	25		45					15,500	1.2	400	2,000	19
agn	Hiperco 27	27	0.6	0.6					24,200	1.0	650	10,000	
ž	Hiperco 35	35	0.5						24,200	1.0	650	10,000	20
Soft	2V-Permendur	49				2			24,000	2.0	800	4,900	26
••	Supermendur	49				2			24,000	0.2		92,500	
	Hiperco 50A	49				2			24,000	< 1		15,000	40
	Permendur	50							24,500	2.0	800	5,000	7
	Metglas 2705M	79		3.5	3.8			9.2	7,700	0.4		600,000	136
	Metglas 2714A	85		3				8	5,700			1,000,000	142

- This is a listing of most of the commercial soft magnetic materials showing generic chemistry and typical properties.
- Most of these alloys contain iron with either or both cobalt and nickel.
- The highest Bs materials contain cobalt in combination with iron.
- All but a few are crystalline. The two non-crystalline materials shown are Metglas which is processed to remain essentially amorphous without long range crystalline structure.
- While the saturation magnetization is much lower, the maximum permeability is exceptionally high.
- This means there is little resistance in the material to exhibiting an induced field.

Material	Main Ingredients	Year First	Br	Hc
Carbon Steel	Fa C	c 1600	Gauss	Oersteds
Tungsten Steel	Fe W Mn C	c 1855	10,500	70
Chrome Steels	Fe Cr Mn C	c 1870	9 500	65
Cobalt Steels	Fe Co W Cr C	1916	9,600	230
Remallov	Fe. Mo. Co	1931	10,000	230
Alnico 3	Fe. Al. Ni	1931	6.800	490
Alnico 2	Fe. Al. Ni. Co. Cu	1934	7.300	560
Cunife	Fe. Cu. Ni	1937	5.700	590
Cunico	Cu. Ni. Co	1938	5.300	450
Vicalloy 1	Fe, Co, V (10%)	1940	8,800	300
Vicalloy 2	Fe, Co, V (14%)	1940	10,000	450
MT Magnet	Fe, Al, C	1947	5,000	200
FeCrCo	Fe, Cr, Co	1977	11,000	250
Indalloy	Fe, Co, Mo	1980	9,000	240

- In the search for materials that would behave as a permanent magnet, many weakly permanent materials were identified.
- Rather than dismiss them as useless, ways were found to utilize these materials unique properties.
- These semi-hard materials function well in devices such as compass, hysteresis-coupled drives, and braking systems.
- We see the same ferromagnetic elements (iron and cobalt) in these alloys, but with modifying elements that create the semi-hard behavior.
- Typical of these elements are the refractory elements titanium, vanadium, molybdenum and chrome.

\mathbf{I}	ARNOLD' MAGNETIC TECHNOLOGIES ROS											osl	till
		S (em Con	i-Ha npc	ard ositi	Ma ion	gne an	etic d P	Mate roper	rials ties			
			Con	nposit	ion (%	%), Fe	bal.		Bs	Br	H _{cB}	BHmax	Resist.
	Material	Co	Cr	Ni	Mo	Nb	V	W	G	kG	Oe	MGOe	µ-ohm•cm
	3% Cobalt-Steel	3	9		1.5					7	130	0.4	
s	Remalloy (Comol)	12			17					11	250	1.1	
at'l	Iron-Chrome-Cobalt	12	33						12,000		50 - 300		69
Ň	17% Cobalt-Steel	17	2.5					8		10	170	0.7	
laro	35%, ~KS Steel	35	6					4		10	250	1.0	
÷	Remendur	49					3			10		1.0	
Sen	Vicalloy I	52					10			9	300	1.0	
•••	Vicalloy II	52					13			10.0	510	1.2	
	Nibcolloy	85				3				10.0	510	3.5	
C.	Our World Touches Your W	lorld Every	Day		©A	rnold Ma	ignetic T	echnolo	ogies				9

- Several of the most commonly used semi-hard materials are shown here sorted from low to high cobalt content.
- A unique characteristic of these materials is that many are malleable (deformable at room temperature).
- Additionally, the magnetic properties can be adjusted by changing thermal processing conditions.
- For that reason, magnetic values shown here are typical, not absolute.

- The key figures of merit for permanent magnet materials are indicated on this chart of the second quadrant.
- Unlike soft and semi-hard materials that utilize the Normal curve only, permanent magnets are characterized by both the Normal and the Intrinsic curves.
- With permanent magnets we deal most often with just the second quadrant.
- The maximum energy product can be estimated as shown here from the Br.
- Conversely, the Br can be estimated when the maximum energy product is known.
- As shown here, this material would be considered a straight line (Normal curve) or square loop (Intrinsic curve) material.
- That is, the Normal curve is straight from Br to past the maximum energy operating point.
- The Intrinsic curve exhibits a sharp corner as it drops in B toward the H axis.
- Hk is a calculated value and, like Hci, is indicative of a magnet's resistance to demagnetization.
- Hk/Hci is considered the squareness coefficient. A number approaching 1 is considered excellent.

		First		
MAGNETIC TECHNOLOGIES	Material	Reported	BH(max)	Hci
	Remalloy	1931	1.1	230
Permanent Magnet	Alnico	1931	1.4	490
Development Timeline	PtCo	1936	7.5	4,300
•	Cunife	1937	1.8	590
Permanent Magnets have	Cunico	1938	1.0	450
been developed to achieve	Alnico, field treat d	1938	5.5	640
 Higher Br and Energy Product 	Vicalloy	1940	3.0	450
(BHmax)	Alnico, DG	1948	6.5	680
- Greater resistance to	Ferrite, isotropic	1952	1.0	1,800
Most are still in production	Ferrite, anisotropic	1954	3.6	2,200
	Lodex [®]	1955	3.5	940
Exceptions I odex was discontinued due to	Alnico 9	1956	9.2	1,500
use of hazardous materials in	RECo₅	1966	16.0	20,000
production and in the product	RECo₅	1970	19.0	25,000
FeCrCo	RE ₂ (Co,Fe,Zr,Cu) ₁	1976	32.0	25,000
 PtCo is a specialty item made in very limited quantities due to 	RE ₂ TM ₁₄ B	1001	26.0	25,000
it's high material cost		1984	35.0	11,000
	RE ₂ TM ₁₄ B	2010	∫ <u>30.0</u>	35,000
Table based on information in Advances in Permanent Magnetism by Rollin J. Parker, p.331-332		2010	52.0	11,000
Our World Touches Your World Every Day © Arnold Magnetic T	echnologies			11

- During the 1900's great strides were made in the development of improved permanent magnets as shown in this table.
- Increased values of both maximum energy product (BHmax) and Hci, resistance to demagnetization, were made culminating with neo magnets ($RE_2TM_{14}B$).

- Maximum energy product is one of the most important characteristics of a permanent magnet and many authors have drawn charts similar to this showing the increase in energy product over the course of the 20th century.
- Interestingly, ferrite magnets, although considerably weaker than the rare earth magnets SmCo and NdFeB, are so much lower in cost that they still contribute over 85% of all permanent magnets made each year.

• The improvements in energy product that have facilitated modern applications can be pictorially demonstrated.

(This is a recalculation of a chart first published by Vacuumschmelze about 20 years ago).

- The "V" under each product name is the magnet volume. For example, an N48 magnet with a V of 0.22 cubic centimeters provides the same magnetic field strength near the pole as a ceramic magnet that is 89 times larger.
- Wherever small size and low weight are preferred, rare earth magnets are necessary.
- System size depends also on the steel flux path. A weaker magnet must be larger and so requires a larger structure which requires more steel.

- Another key characteristic in selecting the best magnet is the temperature range of the application.
- We note here that both Neo and ferrite magnets have a more limited useful temperature range.
- The addition of cobalt to the chemistry expands the usable range.
- Both alnico and SmCo magnets can be used from ~4 Kelvin to about 550 °C.

- Co added to Neo (NdFeB) magnets raises the Curie temperature and reduces the rate of change in magnetic output as a function of temperature.
- Cobalt also improves performance of alnico magnets all three characteristics showing improvement with cobalt additions.

1	ARNOLD' MAGNETIC TECHNOLOGIES ROSki													cill
			С	omp	os	itio	ns	an	d P	roper	ties			
	of Commercial Permanent Magnets													
	Composition (%), Fe bal. Br H _{cB} H _{cJ} BHm											BHmax	Resist.	
	Material	Со	Ni	Nb	Ti	Al	Cu	RE	Other	kG	Oe	Oe	MGOe	µ-ohm•cm
	Alnico 1	5	21			12	3			7.1				65
	Alnico 2	13	19			10	3			7.2	560		1.6	65
	Alnico 4	5	27			12				5.5	720		1.4	65
	Alnico 5	24	14			8	3			12.5	640		5.5	47
ials	Alnico 5-7	24	14			8	3			13.5	740		7.5	47
Iter	Alnico 8	35	15		5	7	4			9.3	1,550		6.0	50
Ma	Alnico 9	35	15		5	7	4			11.2	1,375		10.5	50
net	Cunife I		20				60			5.8	590		1.9	18
lag	Cunife II	2.5	20				50			7.3	260		0.8	18
nt N	Cunico I	29	21				50			3.4	700		0.9	20
Inel	Cunico II	41	24				35			5.3	450		1.0	20
l m	Cobalt-Platinum	23							77	4.5	2,600		8.0	30
Pe	SmCo5	65						35		8 - 10.3	7.8 - 10.0	> 25,000	16 - 25	55
	Sm2Co17	50					6	25	3	10 - 12	9.6 - 11.4	> 15,000	24 - 33	90
	NdFeB (Sintered)	0 - 3		0 - 0.5				32	2	10.8 - 14.8	10.3 - 14.2	> 11,000	28 - 52	180
	NdFeB (Bonded)	0 - 15		0 - 1.5				30	2	4.8 - 8.7		> 8,000	5 - 15	
	LaCo-Ferrites	1								4.6	4,300	> 4,500	4.5 - 5.4	> 10 ⁴
14														
9	Our World Touches Y	Our World Touches Your World Every Day © Arnold Magnetic Technologies 16												16

- This table shows most of the commercially available permanent magnets.
- All of these except cunife and cunico are still supplied into the marketplace.

- In addition to magnetic properties, material price is important to secure commercial success.
- These prices are applicable to the North American market.
- Prices for some of the materials, such as rare earths, change rapidly.
- Furthermore, selling price is a function of the size and shape of the magnet.
- This chart should be considered only approximate and directionally indicative.
- An obvious conclusion is that material development is toward higher performance and lower prices.
- For example a higher energy product ferrite at low cost would be a market winner as would a rare earth magnet with substantially reduced cost.
- The optimal material is toward the upper left of the chart.

- Though many of these materials have been previously researched, our current analytic capabilities are superior to what existed even two or three decades ago.
- We also now have techniques to form these materials with a refined structure at microand nano-scales.
- Research is focused on materials that exhibit ferromagnetic properties either naturally or when combined with alloying elements.
- It's not surprising to see cobalt considered in many of these experimental alloys.

- There has been a great deal of focus on improved permanent magnets from the 1960s right through the present time.
- High prices and shortages of rare earth alloys are driving research into alternate materials.
- Soft magnetic material would also benefit from improvement in performance characteristics that would permit higher efficiency and performance electric machines.

- As a primary ingredient, it's highly recommended to select more common materials such as those above the green dashed line though minor ingredients may be from between the green and red lines.
- But elements from below the dashed red line should be avoided except in the very smallest additions.
- Cobalt lies along the green line.
- Cobalt in magnetic materials currently represents about 7% of all cobalt usage.
- An advantage of cobalt is that there are established sources of supply around the world.
- But it will still be necessary to use cobalt in conjunction with more prevalent elements such as iron and manganese

- One final word...
- Cobalt has been so important to our society that we find numerous examples of the word being used, in a positive way, for unrelated products.