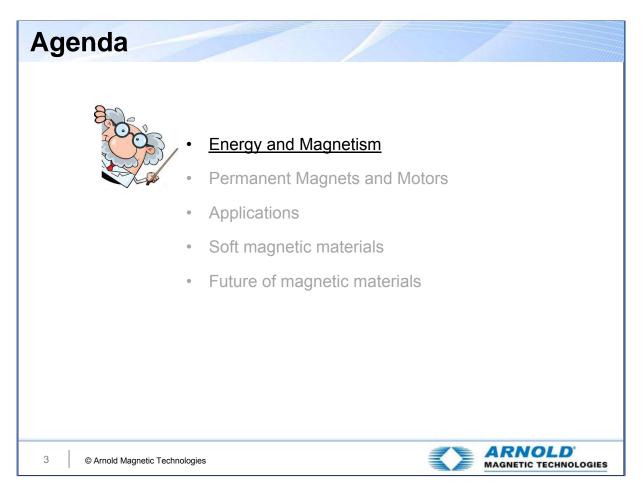
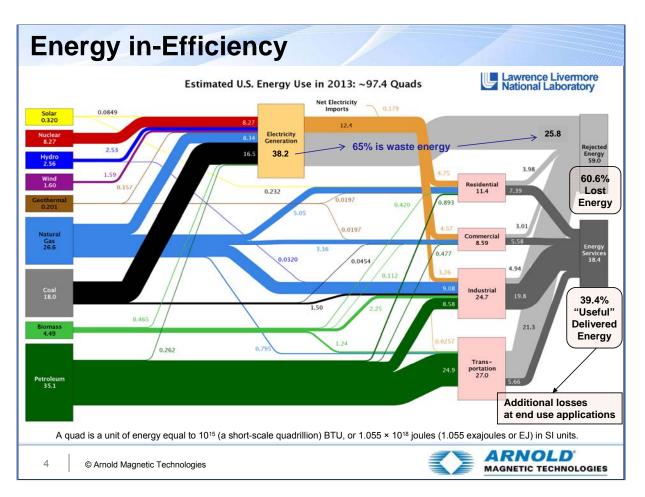
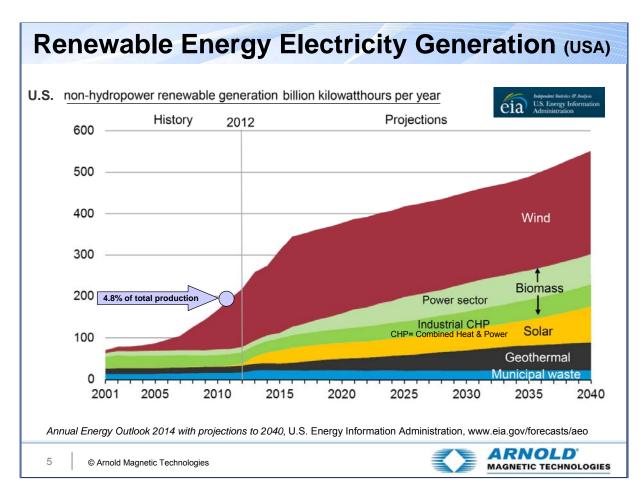
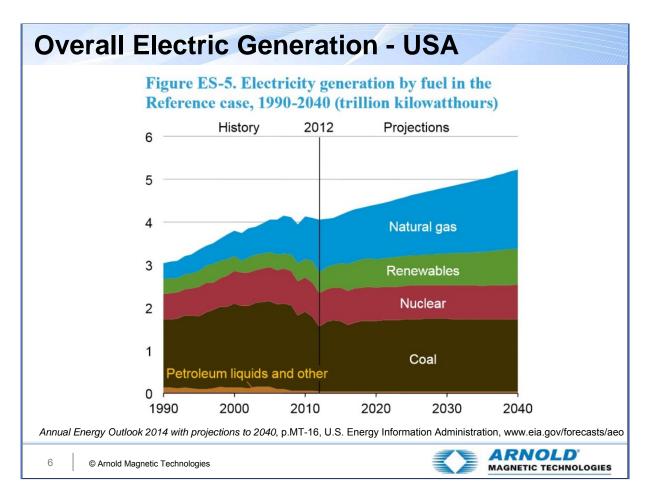


Electricity, Magnetism and... Survival


Steve Constantinides, Director of Technology Arnold Magnetic Technologies Corporation March 1, 2015

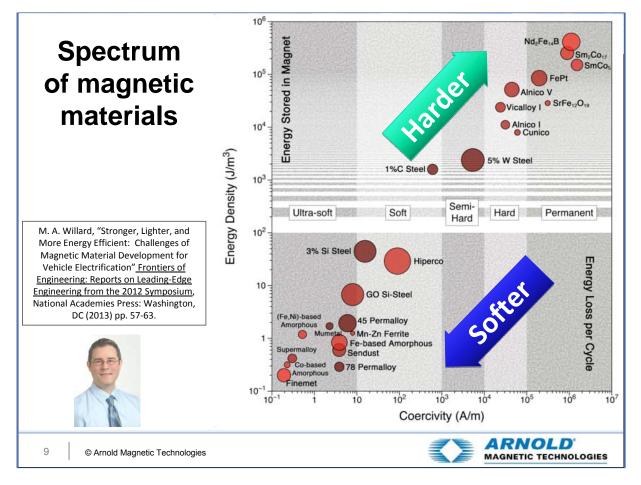

sconstantinides@arnoldmagnetics.com


- First, a brief introduction to Arnold.
- Arnold started largely as a magnetic products manufacturer.
- Over the years we have evolved into an integrated producer as shown here still manufacturing magnets, but increasingly producing assemblies and finished devices that use magnetic materials.

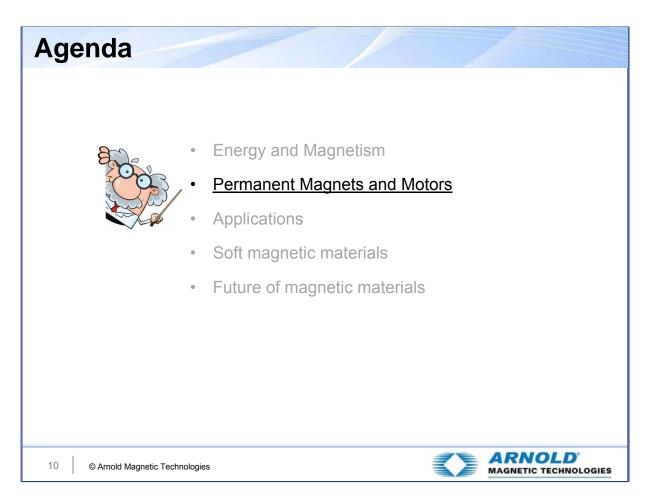

• Let's follow the professor through these topics starting with an introduction to what magnetism is and where it originates.

- Lawrence Livermore National Laboratories personnel have produced Sankey plots of energy production and use for over a hundred countries.
- This chart for the USA, for example, shows us that most petroleum is used primarily for transportation (gasoline, diesel, jet fuel).
- It also shows that electricity is produced by many methods from solar down to coal (left of chart) with coal and natural gas providing the greatest input.
- The efficiency of production and distribution is low.
- Efficiency of machines using electricity is variable, ranging from 30% to 98.5% with the majority of electric consumption due to motors (>50%).
- Magnetic materials (soft and permanent magnetic materials) are used in production, transmission and use of electrical energy and are, therefore, hugely important to our economies and standard of living.

- Let's start the discussion with a brief examination of production and use of electricity.
- After all, the correct term for magnetism is "electro-magnetism".
- The electromagnetic force is one of four forces identified by physicists. The others are the weak and strong atomic forces and force due to gravity.
- This is a powerful graphic!
- In 2011, output from non-hydro renewable energy sources was 4.8% of total electricity production.
- This forecast chart suggests that output from renewable sources will more than double by 2035.


• With hydro output remaining constant, total renewables (hydro plus non-hydro) will represent approximately 14.9% of electric production – which means that ~85% will still be produced by fossil fuels and nuclear.

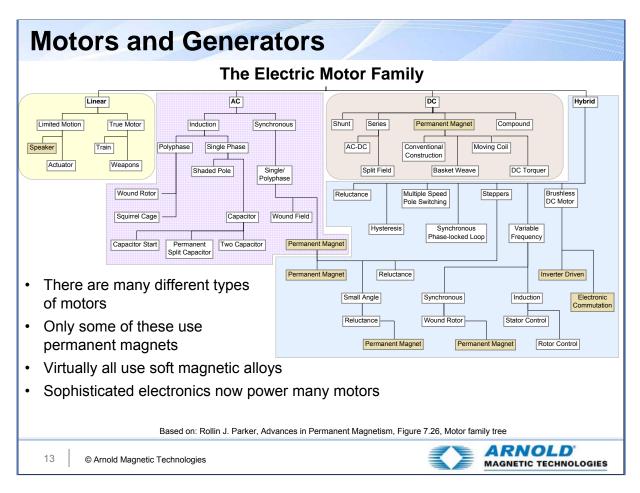
el us	sed for p	oro	duction	of	electrici	ity -	2012	
	Coal*	TW/h	Natural gas	TW/h	Oil	TW/h		
	People's Rep. of China	3 785	United States	1 265	Japan	181		
	United States	1 643	Russian Federation	525	Saudi Arabia	150		
	India	801	Japan	397	Islamic Rep. of Iran	69		
	Japan	303	Islamic Rep. of Iran	170	Mexico	56		
	Germany	287	Mexico	151	Kuwait	40		
	Korea	239	Italy	129	Pakistan	35		
	South Africa	239	Egypt	125	United States	33		
	Australia	171	Saudi Arabia	121 117	121	Indonesia	33	
	Russian Federation	169	Thailand		Russian Federation	28 25	2014	
	United Kingdom	144	Korea	112	Egypt			
	Rest of the world	1 387	1 387 Rest of the world		Rest of the world	478	Key World Energy	
	World	9 168	World	5 100	World	1 128	STATIS	
Intern			fuels which a)	ld2014 pd		
	d Magnetic Technologies			sepanda				


- The fuel consumed to produce electricity depends on what is available.
- In the USA we have coal and natural gas.
- China is greatly dependent upon coal.
- Japan imports most all its fuel and so uses oil to produce electricity.
- Saudi Arabia, as one of the larger producers of oil, consumes oil to produce electricity. Natural gas is frequently associated with oil and represents the second largest fuel source for Saudi Arabia.

Electricity and magnetic materials
What is the role of magnetic materials? They facilitate the efficient
 Conversion of mechanical into electrical energy Both soft and permanent magnetic materials Transmission of electrical energy Primarily soft magnetic materials Conversion of electrical into mechanical energy Both soft and permanent magnetic materials
8 © Arnold Magnetic Technologies ARNOLD' MAGNETIC TECHNOLOGIES

- Magnetic materials are important elements in the production, transmission and consumption of electrical energy.
- The magnetics industry is pursuing improvements in manufacture of magnetic products and in the devices that use them.

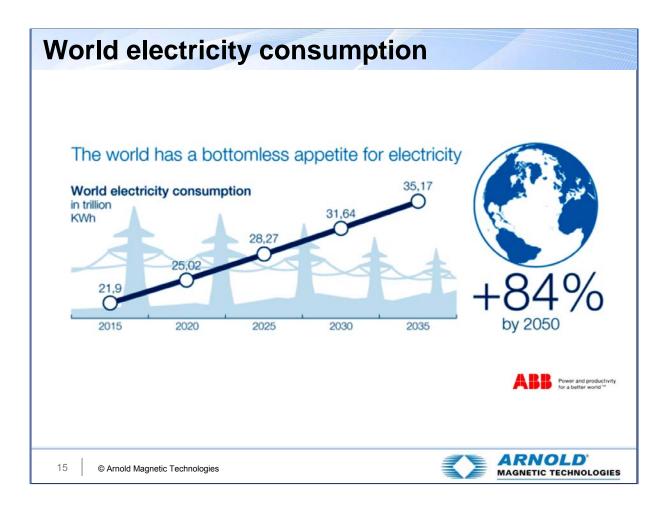
- This chart from Matt Willard of Case Western Reserve University, shows many important details.
- First, there is a continuum from the very "soft" magnetic materials to the very "hard" permanent magnet materials with an intermediate region we call "semi-hard".
- Soft magnetic materials are better performers when the energy consumed (lost) per cycle is very low. Thus the best performing soft magnetic materials may be seen near the bottom left of the chart.
- Conversely, permanent magnets are expected to retain their properties and are useful for their "stored" energy with the best performers found near the upper right of the chart.

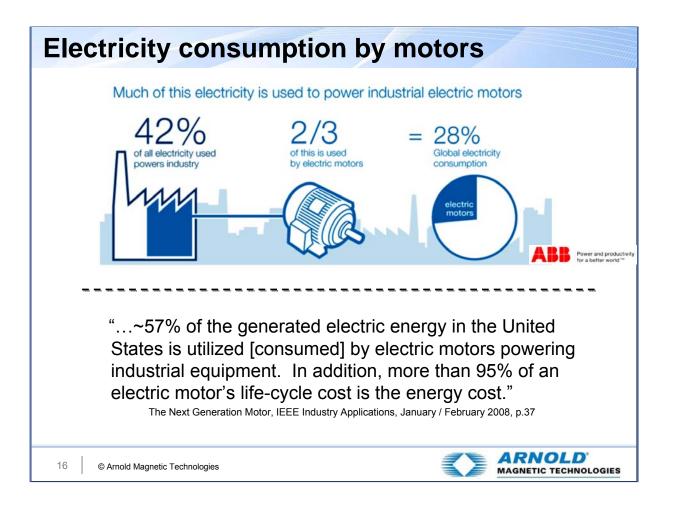

• Let's follow the professor through these topics now looking at magnets and motors.

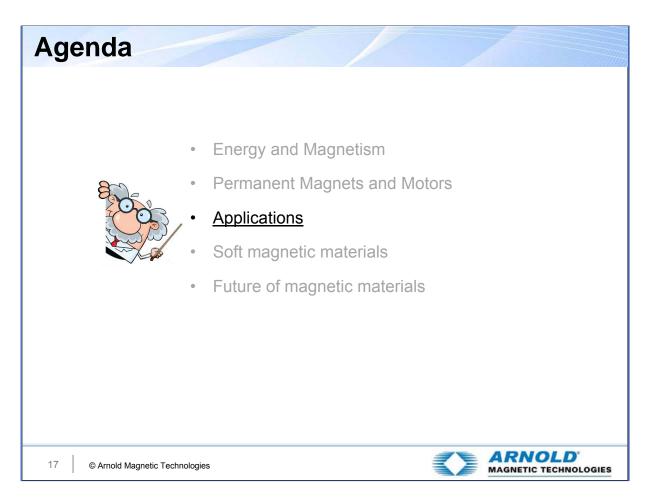
Ferrite magnet use		
Greater than 88% of all permanent magnets	s on a we	ight basis.
Motors - Automotive Motors - Appliances Motors - HVAC Motors - Industrial & Commercial Motors - All Other Loudspeakers Separation Equipment Advertising & Promotional Products Holding & Lifting MRI Relays & Switches All Other - Miscellaneous	18% 13% 13% 12% 5% 9% 5% 5% 5% 3% 1% 11%	70% in motors
11 © Arnold Magnetic Technologies		ARNOLD MAGNETIC TECHNOLOGIES

- Ferrite magnets, commercialized in the late 1950s, still represent the largest portion of permanent magnet products on a weight basis.
- The total fraction of ferrite used in motor-type devices is about 70%.
- Acoustic transducers, which include loudspeakers, headphones, cell phone speakers, and ear buds are actually linear motors and are included in the motor total.

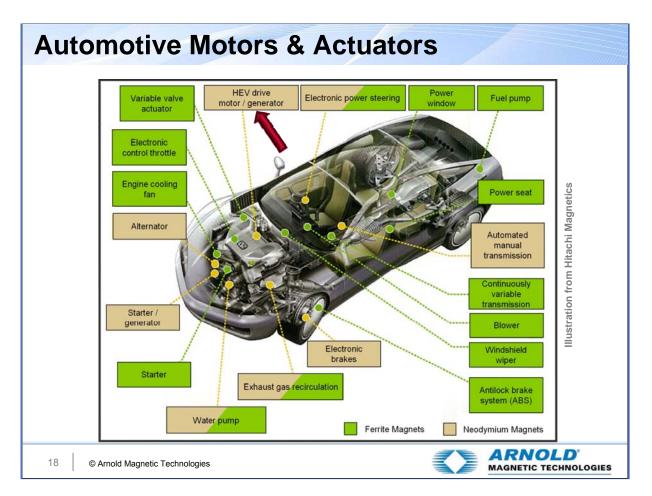
Rare Earth magnet use (2010)		
Greater than 65% of all permanent magn	ets on	a \$\$	basis.
Motors, industrial, general auto, etc HDD, CD, DVD Electric Bicycles Transducers, Loudspeakers Magnetic Separation MRI Torque-coupled drives Sensors Generators Hysteresis Clutch Air conditioning compressors and fans Energy Storage Systems Wind Power Generators Gauges Magnetic Braking Relays and Switches Pipe Inspection Systems Hybrid & Electric Traction Drive Reprographics Wave Guides: TWT, Undulators, Wigglers	$\begin{array}{c} 24.0\% \\ 16.3\% \\ 8.4\% \\ 8.1\% \\ 4.6\% \\ 3.9\% \\ 3.3\% \\ 3.1\% \\ 3.0\% \\ 2.8\% \\ 2.4\% \\ 2.3\% \\ 1.9\% \\ 1.5\% \\ 1.5\% \\ 1.5\% \\ 1.3\% \\ 0.9\% \\ 0.8\% \\ 0.6\% \\ 0.3\% \end{array}$	0 0 0 0 0 0	• Motor-type applications = 67%
Unidentified and All Other	6.6%		
Source: Numerous including Benecki, Clagett and Trout, personal communications with in	ndustrial partne	ers, conf	erences, suppliers, etc.
12 © Arnold Magnetic Technologies			ARNOLD

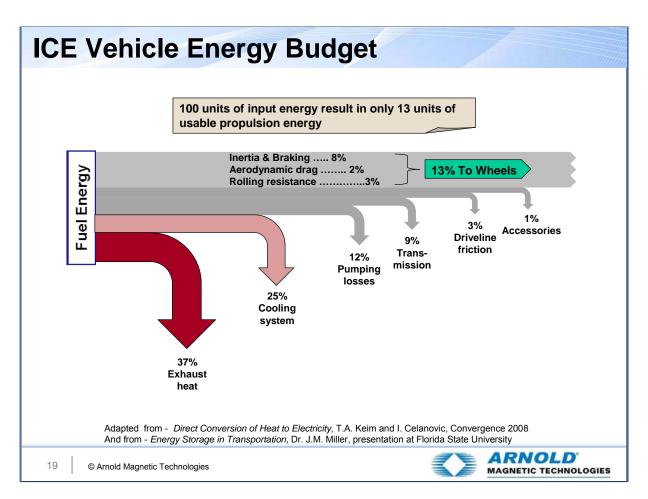

- Rare earth magnets enjoy a more diverse set of applications.
- Nevertheless, adding-up the motor-type applications (indicated by blue dots) yields 67% very similar to the fraction for ferrite.
- Since ferrite and rare earth magnets represent about 97% of permanent magnet production (weight basis), this tells us that motors (and generators) consume the great majority of permanent magnets.




- The single largest use for permanent magnets is in motors.
- However, only a fraction of all motors use permanent magnets.
- PM motors are becoming more common due in part to government efficiency regulations PM motors being more efficient than induction, wound field and similar types.
- Improvements in electronics and the reduced cost of electrical controls is allowing permanent magnet BLDC and ECM drives to penetrate the market to an extent not possible 25 years ago.

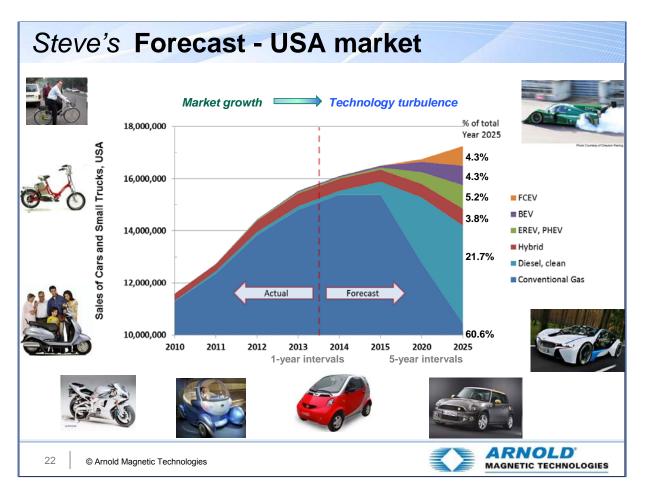
		PM
	Machine for Electric Ship Performance	Propulsion
	Output	50,000 HP (36.5 MW)
	Speed	1-127 RPM
10 00 00 00 00 00 00 00 00 00 00 00 00 0	Torque	>2 M ft. lbs. (2.7M Nm)
	Motor Efficiency	97.5%
10 C For a la ser	Mechanical	
a de ha	Motor Length	202 inches (5.1 meters)
	Motor Width	214 inches (5.4 meters)
Switched Reluctance Motors	Motor Height	209 inches (5.3 meters)
and their Control, p.154	Motor Weight	280,000 lbs. (127 tonnes, 127,000 kg)
T.J.E. Miller	Cooling Method	Fresh water
	Electrical	
	Voltage	1450 VAC
	Phases	Doubly-fed, 3-phase
	Insulation Class	R (220° C)
From very small	Temperature Rise	H (180° C)


• Motor size ranges from the very small to the extremely large.

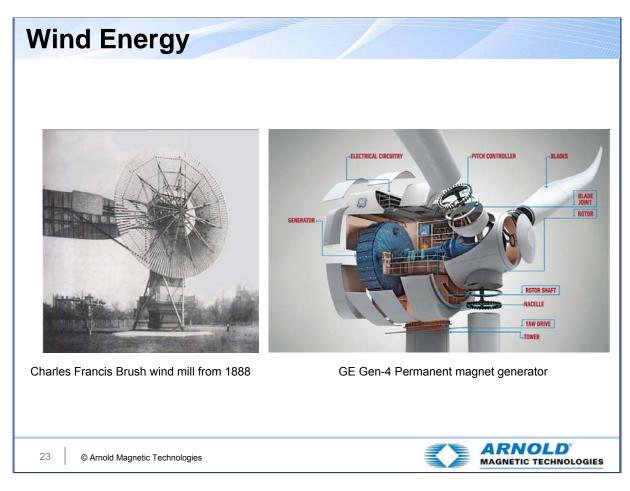


• The professor next wishes us to discuss applications for permanent magnets.

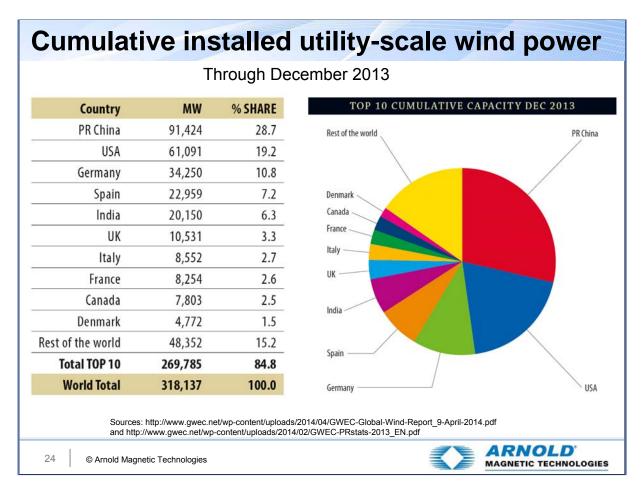
- One of the largest markets for permanent magnets is the transportation industry.
- It is tempting to focus on rare earth magnets such as NdFeB for use in automotive motors.
- However, many vehicular systems still rely on ferrite magnets as they are less expensive, adequately strong, and naturally corrosion resistant, including to road salt.
- This illustration from Hitachi shows several applications and likely magnet type(s) with green representing ferrite and tan representing rare earth magnets, most of which are neodymium iron boron, although a few SmCo magnets are used (primarily in sensors).
- When a motor is mentioned, most of us will immediately think of a device that drives a spinning shaft, but there are linear motors such as door lock actuators and entertainment system speakers.
- Note the red arrow pointing to the traction drive motor...

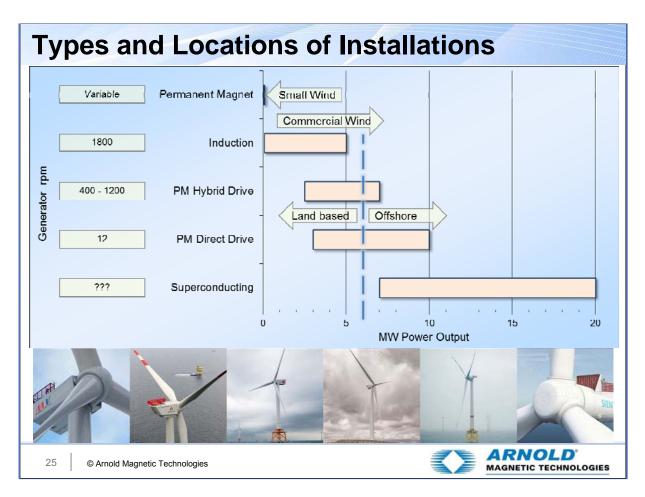

- The traditional internal combustion engine (ICE) wastes a great deal of energy.
- Electric traction drives have the potential to dramatically improve efficiency by reducing heat generation, cooling requirements, and cooling fluid pumping energy.
- Depending on the motor-to-wheel connection, friction losses may also be considerably less.

	Permanent Magnet Motor	Induction Motor	Reluctance Motor
Cost (\$/kW)	\$\$\$	\$\$	\$
Power density (kW/L)	Highest	Moderate	Moderate
Specific power (kW/kg)	Highest	Moderate	Moderate
Efficiency (%)	Best	Good	Better
Noise and vibration	Good	Good	Unacceptable
Manufacturability	Difficult	Mature	Easy
Potential for technical improvement for automotive applications	Significant	Minimal	Significant
-cylinder ICE	Electri Wikipedia: English Tc Date 22 Source O	ric traction drive mo	topologies – L. Marlino, OR tor ıt-4 Engine and Electric-Driv


- Although other topologies are used, permanent magnet motors offer the optimal combination of performance versus cost.
- But due to the recent high cost of powerful rare earth magnets and instability of raw material supply, some car manufacturers, such as Tesla, are using induction drive motors (with no magnets).

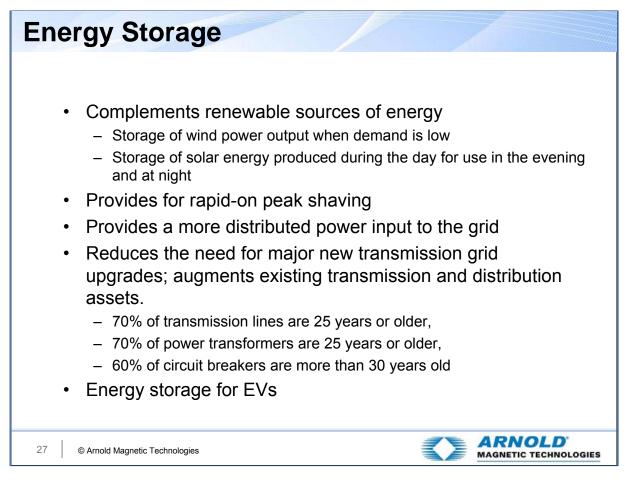
Alter	native Powertrain	Types
		Examples
HEV	Hybrid Electric Vehicle Uses both an electric motor and an internal combustion engine to propel the vehicle.	Prius
PHEV	Plug-In Hybrid Electric Vehicle (PHEV) Plugs into the electric grid to charge battery - is similar to a pure hybrid and also utilizes an internal combustion engine.	Plug-in Prius
EREV	Extended Range Electric Vehicle (EREV) Operates as a battery electric vehicle for a certain number of miles and switches to an internal combustion engine when the battery is depleted.	Volt
BEV	Battery Electric Vehicle BEV) Powered exclusively by electricity from it's on-board battery, charged by plugging into the grid	Leaf; Tesla Model S
FCEV	Fuel Cell (Electric) Vehicle (FCEV) Converts the chemical energy from a fuel, such as hydrogen, into electricity.	Honda FCX Clarity; Hyundai Tuscon
21 ©	Arnold Magnetic Technologies	


- There are many "alternative drive" types.
- This list shows most of them including one or more examples of each that are in production.
- Some use permanent magnet motors such as the Prius and Nissan Leaf, while some use induction motors such as the Tesla Model S.

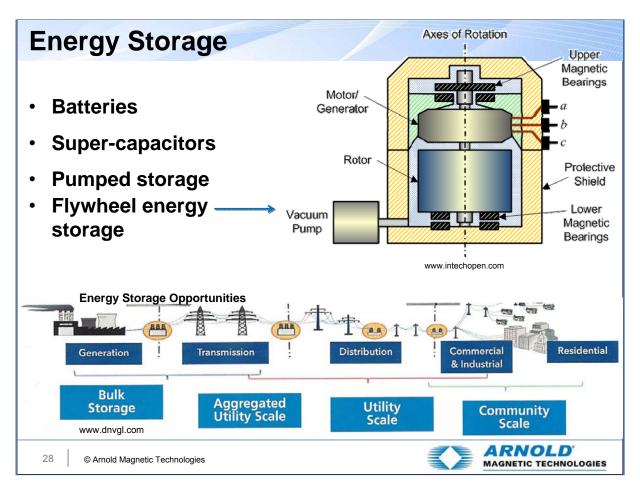

- In response to other overly optimistic forecasts, over the last few months data and opinions have been sought regarding the development of the transportation industry.
- This chart is my humble attempt to show a consensus of the development of alternate drive systems by type.
- One reason why ICE (including clean diesel) will remain the primary source of tractive power, at least through 2025, is the technological advances being made to provide ever more efficient drive systems at modest price increases and using existing fuel distribution infrastructure with simultaneous "light-weighting" of the vehicles.
- Expansion in use of any type drive depends upon a range of factors including economic, political, and technical.
- N.B.: the scale at the bottom is by year to 2015 and then by 5-year increments.

- Wind energy is not new.
- But Utility-scale wind is a more recent development having grown slowly until: 1) government subsidies were offered starting a few years ago (e.g. USA) and 2) need for a more environmentally friendly power generation alternative was recognized (e.g. Germany and China).

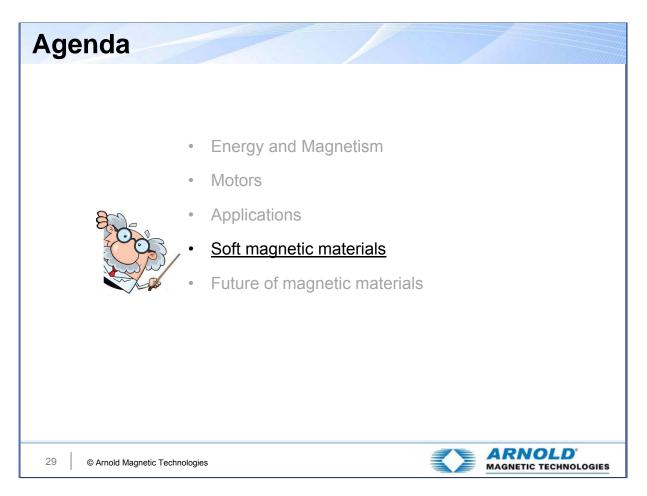
- If all 318,137 MW of wind power indicated here for global installations were produced using direct drive PM generators, at 600 kg per MW, this would have consumed 191,000 tons of NdFeB magnets which requires about 500,000 tons (all RE elements) REO production.
- That equates to about 4 years output of RE mines globally (2010 published data, USGS).

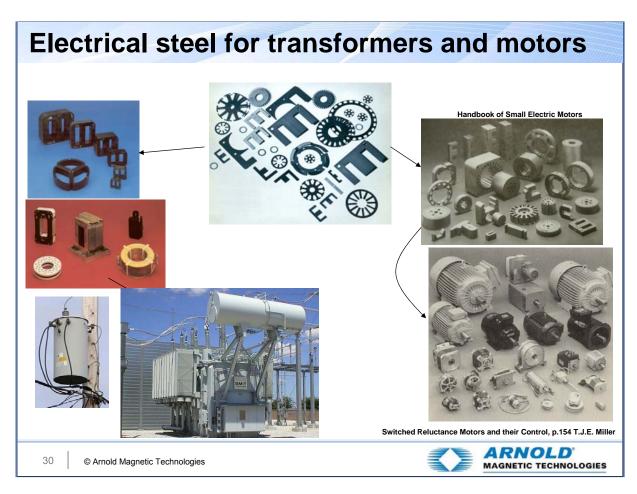

- Although direct drive (permanent magnet) generators have been in development and trials for several years, installation has been limited.
- In the USA, one estimate is less than 250 direct drive units versus 33,000+ installed generators (as of 2014).
- The situation is similar in the UK with less than 1% of generators using PM direct drive technology (as of 2014).
- China has reputedly installed more direct drive units, perhaps up to 25% of new systems installed in 2010, prior to the neo material shortages and price spikes.

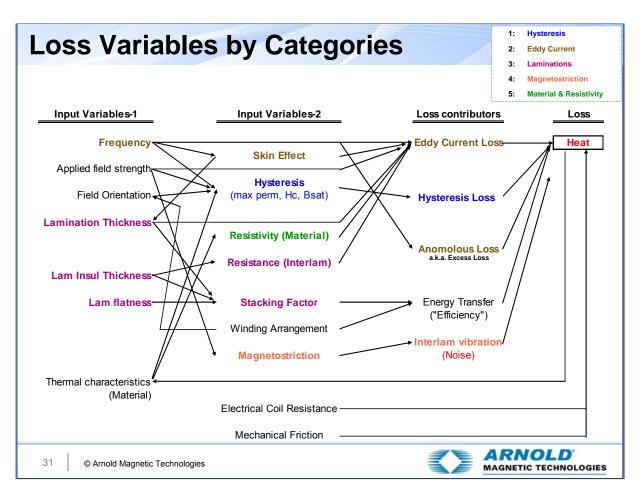
	Offshore	Turbine d	development
--	----------	------------------	-------------

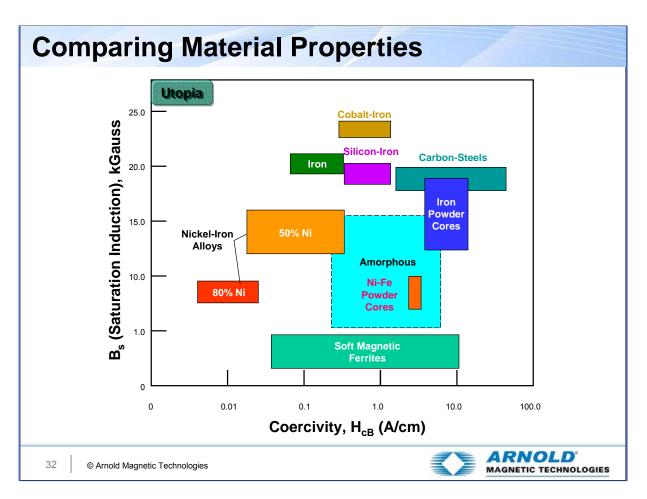

TOP TEN OFFSHORE TURBINES The wind industry's biggest, heaviest and most expensive products compared and contrasted

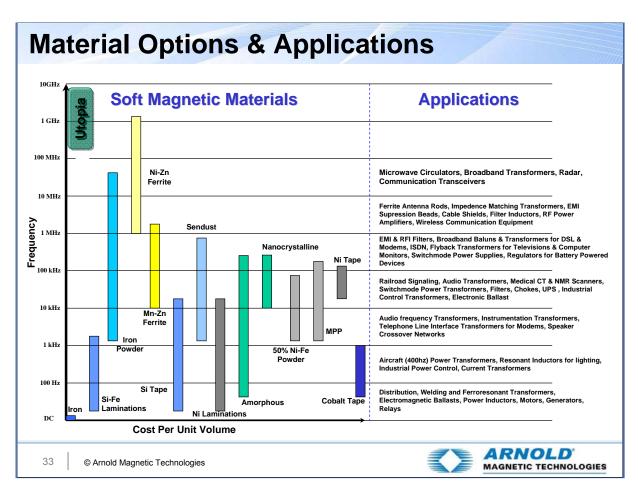
Model	IEC class	Power rating	Rotor diameter	Drive system	Noteworthy
MHI-Vestas V164-8.0MW (Denmark)	S	8MW	164m	MSG, PMG	Clever combination of evolutionary and innovative design features; flanged tube-shaped drivetrain, favourable 500-tonne head mass
Ming Yang SCD 6.0 (China)	IIB	6MW	140m	MSG, PMG	Innovative two-blade downwind turbine with compact semi-integrated drivetrain and single rotor bearing, focused at typhoon-prone markets
Siemens SWT-6.0-154 (Germany)	I.	6MW	154m	DD, PMG	Single rotor bearing; largest rotor diameter in 6MW class, converter and transformer in nacelle; favourable head mass
Alstom Haliade 150-6MW (France)	I	6MW	150.8m	DD, PMG	Stationary main shaft (pin); "pure torque" principle decouples rotor- bending moments and generator drive torque
Siemens SWT-4.0-130 (Germany)	L	4MW	130m	HSG, IG	Evolutionary development and optimisation of SWT-3.6-120 model, which has been the offshore market leader for several years
Senvion 6.2M152 (Germany)	S	6.15MW	152m	HSG, DFIG	Developed from pioneering 5MW turbine introduced in 2004; prototype of more powerful model with longer blades installed in 2014
Areva M5000-135 (France)	S	5MW	135m	MSG, PMG	Extensive upgrade of M5000-116 introduced in 2004; features clever pioneering low-speed hybrid-drive design
Gamesa G128-5.0MW (Spain)	IB	5MW	128m	MSG, PMG	Pioneer tube-type drivetrain; builds on 2009's G128-4.5MW platform; new variant with 132m rotor diameter has been announced
Hyundai HQ5500/140 (South Korea)	T	5.5MW	140m	HSG, PMG	Sister product of Dongfang 5.5MW, co-developed with AMSC; Sinovel SL5000/SL6000 uses same AMSC product platform
Goldwind GW 6MW (China)	I.	6MW	150m	DD, PMG	Specification not verified; initial design basis 5MW power rating
BDFIG Brushless doubly-fe CGFRE Carbon & glass-fibi DD Direct drive DFIG Doubly-fed induction EESG Electrically excited s	re reinforceo generator	д ероху	HH Hut HSG/L IG Indu	Glass-fibre reinfo b height SG High-speed (ction generator ledium-speed ge	geared/Low-speed geared
26 © Arnold Ma			MSG m	iedium-speed ge	Source: http://www.windpowermonthly.com/10-biggest-turk


- The largest generators are designed for use off-shore.
- Of the current top ten generators identified by Wind Power Monthly, 8 are PM type.
- The largest to-date is the MHI-Vestas 8.0 MW generator.


• Introduction of alternative electric generation coupled with an aging grid structure provides advantages to installation of energy storage systems.


- There are several technologies being explored for energy storage and each has advantages.
- The method most related to the magnet industry is flywheel storage which could be implemented at any of several points within the electric distribution system.
- Magnets are likely to be used in the "frictionless" magnetic bearing system and quite probably in the generator.


• The professor now leads us to examining soft magnetic materials.


- The greatest uses for soft magnetic materials are laminations, thin layers of metal alloy, used in transformers and motors/generators.
- Transformers, motors and generators range from the very small to devices as large as a house.
- In addition to laminations, the lowest cost alternative is rolled and stamped-to-shape low carbon steel.
- Most devices use a combination of laminations and steel components.

- This slide shows a complex set of variables involved with selecting the proper material grade and thickness of lamination material, typically, but not necessarily Si-Fe. Other materials include Fe-Co and Fe-Ni.
- Lower efficiency is mostly the result of energy being converted to heat.
- Note that many of the variables are interactive. One variable can affect another variable. For example, switching frequency affects how deep the field will penetrate a lamination which affects desirable lamination thickness which affects stacking factor, etc.
- That is, the use of thin gauge alloy (e.g. Arnon[®] 5 and Arnon[®] 7 Si-Fe) can minimize the losses associated with most of these variables.
- These variables can be grouped into similar categories for further discussion as desired and the 5 groups have been created here as shown in the upper right of the chart.

- There is a trade-off between maximum (saturation) induction and coercivity.
- Plotting the coercivity, Hcb, against the saturation induction, Bs for a number of commercially important materials results in this chart.
- A high Hcb indicates that the material will have high (hysteresis) core loss.
- From this loss standpoint, the 80% Nickel alloys, with low Hcb, are desirable.
- Where high saturation (flux carrying capability) is required, silicon iron and cobalt iron are desirable.
- Cobalt iron is used less often than silicon iron as it is far more expensive it is only used where absolutely necessary, such as ultra-high power density, sealed motors/generators.

- It is also important to examine frequency of the application and cost.
- Some applications are cost-forgiving, but most are not.
- Ability to perform at high frequency is an additional figure of merit.

Metglas®					hegias	4
Key Products:			Key E	nd Applicatio	ns:	
Metglas® Amorphous Metals Glassy Metals Transformer Core A Metglas Brazing Filler Distribution Transfo Industrial Transform Pulse Power Cores	Metal rmer Core		Ind Mat Hig Sol: Har Pul: Hig	ustrial Power terial for Anti -7 h Efficiency Inv ar Inverters, W monic Filters se Power Core h Power Magn	verters and Indu ind Inverters	ictors
		2605SA1	2605HB1M	2605SA3	2714A	2826MB
Characteristic	Unit	Iron-based	Iron-based	Iron-based	Cobalt-based	Nickel-based
Characteristic						
Bsat	Tesla	1.56	1.63	1.41	0.57	0.88
	Tesla n/a	1.56 300,000	1.63 300,000	1.41 35,000	0.57 1,000,000	
Bsat						0.88 800,000 138

http://www.metglas.com/metglas_company_history/overview/

°C

34 © Arnold Magnetic Technologies

Curie Temperature

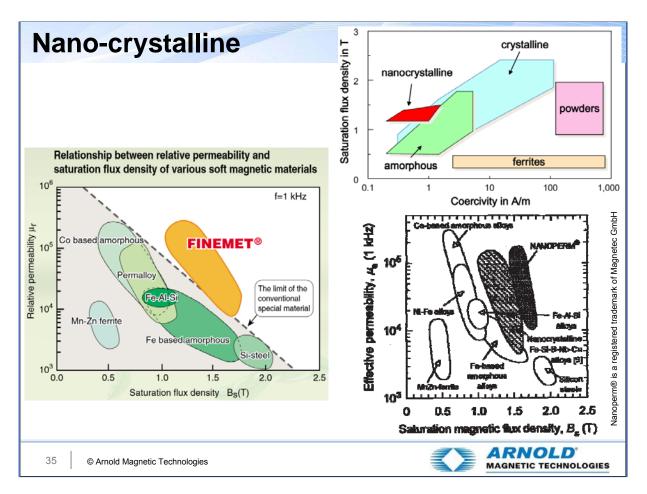
• A few decades ago, melt-spun soft magnetic alloys were developed having remarkable properties.

395

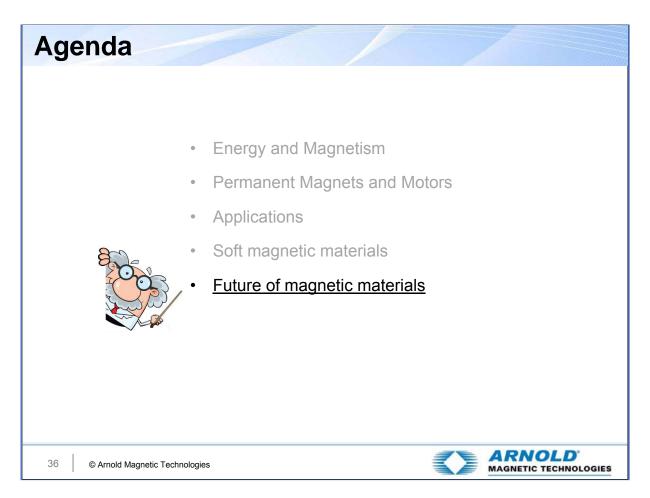
• The company that spearheaded the development of this family of materials (Metglas®) was a division of Allied Signal.

364

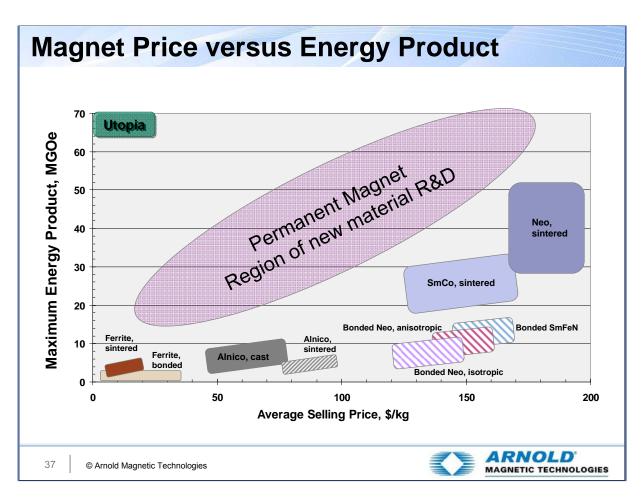
358


225

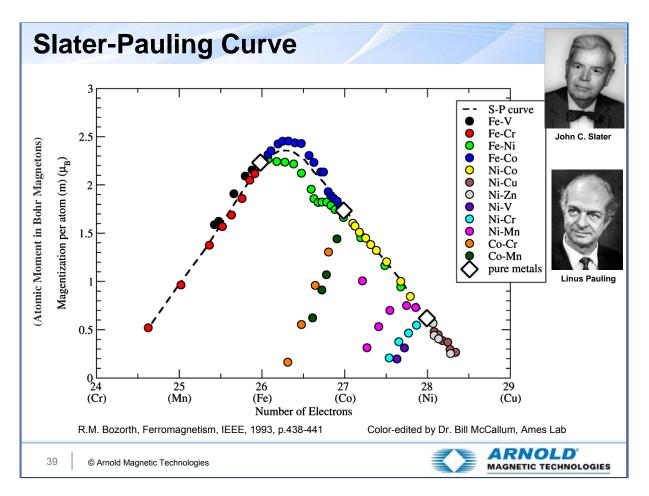
ARNOLD


MAGNETIC TECHNOLOGIES

353

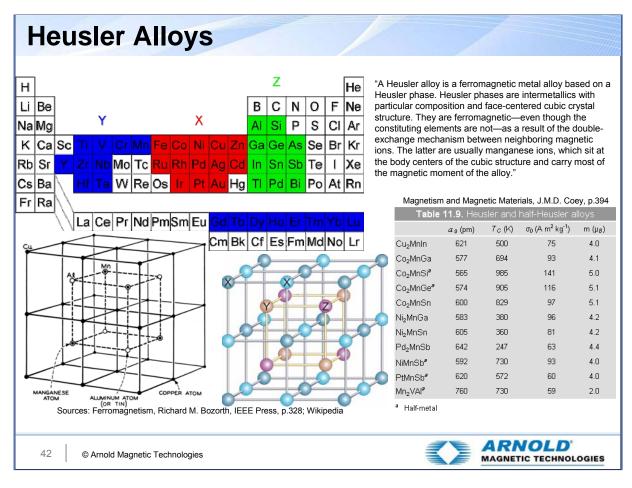

- Allied Signal purchased Honeywell and then took the Honeywell name. Shortly thereafter, the Metglas® business unit was sold to Hitachi who remains the owner.
- The name Metglas® is apropos as the material is non-crystalline just as glass is a non-crystalline solid.
- Some grades of Metglas have extraordinarily high maximum permeability (ease of magnetization) such as grade 2714 with μ_{max} of 1,000,000.
- However, there are trade-offs among maximum permeability, saturation magnetization, and magnetic hardening due to mechanical stress.


- Another recently developed family of materials are nano-crystalline soft magnetic alloys.
- These go by the trade names such as:
 - o Finemet® Hitachi
 - o Nanoperm Magnetec GmbH
 - o Vacoperm Vacuumschmelze
- Each material offers benefits with trade-offs in properties, handling, manufacturability, cost, etc.


• What does the future hold for magnetic materials?

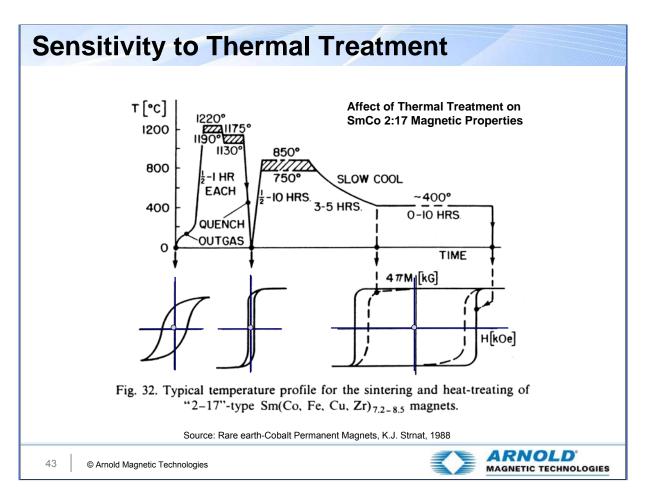
- Many factors such as shape, complexity and size contribute to a magnet's selling price.
- The values shown here are fair estimates of standard shapes and sizes.
- Selling noted price is for western markets (USA and Europe) and is approximate. More important are the relative prices for comparing one product to another.

- Heisenberg, using the quantum theory, in 1928 explained that as atoms with partially filled electronic shells at large distances from each other move closer to one another their shells begin to overlap and quantum mechanical exchange forces arise between the incomplete shells. The corresponding energy appears in the mathematical formulation as an "exchange integral".
- When the exchange energy is positive, as it is for Fe, Co, Ni, and Gd, ferromagnetic properties are exhibited. This occurs when the atomic spacing (a) is about 3-4 times the radius of the incomplete shell (r).
- Additionally, some combinations of otherwise weak magnetic materials have strong magnetic characteristics. Examples are MnAlC and MnBi. Alloying modifies the atomic spacing between adjacent manganese atoms changing the exchange interaction for manganese, moving it from a negative value to positive and causing the material to exhibit ferromagnetism.
- On the other hand, when alpha iron transforms in the presence of carbon to form gamma phase, it loses its ferromagnetic properties.

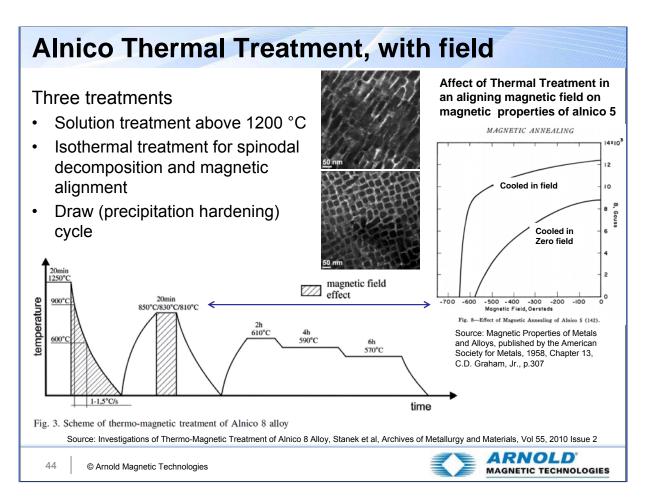

- The Slater-Pauling curve shows the calculated magnetization for several transition elements and binary combinations.
- The highest magnetization is exhibited by a mix of iron and cobalt at approximately 2.4 Bohr magnetons.
- The calculated value is very close to that achieved in products such as Supermendur and vanadium Permendur.

	Ma	ior co	onstitu	ionte			Mir	or co	ncti+	uonte	Comments
ft Magnetic Material			institu	ients			IVIII		msuu	uents	comments
Iron	Fe										Low carbon mild steel
Silicon Steel	Fe						Si				Si at 2.5 to 6%
Nickel-Iron	Fe	Ni					-				Ni at 35 to 85%
Moly Permalloy	Ni	Fe					Мо				Ni at 79%, Mo at 4%, bal. Fe
Iron-Cobalt	Fe	Со					V				23 to 52% Co
Soft Ferrite	Fe	Mn	Ni	Zn			0				
Metallic Glasses	Fe	Со	Ni				В	Si	Р		Amorphous and nanocrystalline
Alnico Platinum Cobalt	Fe Pt	Ni Co	Со	Al	Cu		Ti	Si			
Hard Ferrites	Fe	Sr									Oxygen dilutes; Ba no longer use
SmCo	Со	Sm	(Gd)	Fe	Cu	Zr					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Neodymium-iron-boron	Fe	Nd	Dy	(Y)	В	Со	Cu	Ga	Al	Nb	
, Cerium-iron-boron	Fe	Nd	Ce	B							Limited use in bonded magnets
Con E - N	Fe	Sm	Ν								Nitrogen is interstitial; stability is
SmFeN											
MnBi	Mn	Bi									Never commercialized

• These are the majority of magnetic materials and are listed with their constituent elements.


Т	Group 1 IA				hese eriod			ave b	een ir	nvesti	gated	for ar	ı exte	nded				18 VIIIA 2
	H Is1 +1,-1	2 IIA		•	enou		C						13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	Heliu VIIA
3	6.941 Lil Lithium (He) 2s1 +1	4 9.01218 Be Beryllium (He) 252 +2	Gas Categ	e at STP Liquid gories Akali Metals line Earth Metals		Synthetic Noble Gas Halogens							5 10.811 Boron IIA +3	Carbon	7 14.0067 Nitrogen VA +1,2,3,4,5(-1,2,3	8 15.9994 Oxygen VIA -2	9 18.9984 F Fluorine VIIA -1	
11	1 22.9898 Na Sodium [Ne] 3s1 +1	12 24.305 Mg Magnesium [Ne] 3s2 +2	Ra	ansilion Metals re Earth Metals Poor Metals 4 IVB	5 VB	Non-metals Metalloids 6 VIB	7 VIIB	8 VIII	9 VIII	10 VIII	11 IB	12 IIB	13 26.9815 Al Aluminum IIA +3	14 28.0855 Silicon	15 30.9736 P Phosphorus VA +3,5/-3	16 32.065 Sulfur VIA +4,6/-2	17 35.453 Cl Chlorine VIA +1,5,7/-1	18 Argo VIIM 0
19	9 39.0983 K Potassium [Ar] 4s1 +1	20 40.078 Calcium [M] 452 +2	21 44.9559 Sc Scandium [Ar] 3d1 4s2 +3	22 47.867 Ti Titanium [Ar] 3d2 4s2 +2,3,4	23 50.9415 V Vanadium [Ar] 3d3 4s2 +2,3,4,5	24 51.9961 Cr Chromium [Ar] 3d5 4s1 +2,3,6	25 54.938 Mn Manganese [Ar] 3d5 4s2 +2,3,4,7	26 55.845 Fe Iron [Ar] 3d5 452 +2,3	27 58.9332 Cobalt [AI] 3d7 4s2 +2,3	28 58.6934 Nickel [Ar] 3d8 4s2 +2,3	29 63.546 Cu Copper [Ad] 3d10 4s1 +1,2	30 65.409 Zn Zinc [Ar] 3d10 4s2 +2	31 69.723 Gallium [Ar] 3d10 4s2 4p1 +3	32 72.64 Germanium [Ar] 3d10 4s2 4p2 +2,4	Arsenic [At] 3d10 4s2 4p3 +3,5/-3	34 78.96 Selenium [Ar] 3d10 4s2 4p4 +4,6/-2	35 79.904 Br Bromine [Ar] 3d10 4s2 4p5 +1,5/-1	36 Kryp [Ar] 3d10
31	7 85.4678 Rb Rubidium [Kr] 5s1 +1	38 87.62 Strontium [Kr] 552 +2	39 88.9059 Y Yttrium [Kr] 4d1 5s2 +3	40 91.224 Zr Zirconium [Kr] 4d2 5s2 +4	Niobium [Kr] 4d4 5s1 +3,5	42 95.94 Molybdenum [Kr] 4d5 5s1 +6	43 98 TC Technetium [Kr] 4d5 5s2 +4,7	44 101.07 Ru Ruthenium [K] 407 5s1 +3	45 102.906 Rh Rhodium [Kr] 4d8 5s1 +3	46 106.42 Pd Palladium [Kf] 4d10 +2,4	47 107.868 Ag Silver [Kd] 4d10 5s1 +1	48 112.411 Cd Cadmium [Kr] 4d10 552 +2	49 114.818 Indium (Kr) 4d10 5s2 5p1 +3	50 118.71 Sn Tin [Kr] 4d10 5s2 5p2 +2,4	51 121.76 Sb Antimony [Kr] 4d10 5s2 5p3 +3,5/-3	52 127.6 Te Tellurium [Kr] 4d10 5s2 5p4 +4,6/-2	53 126.904 Iodine [Kr] 4d10 5s2 5p5 +1,5,7/-1	54 Xen (Kr) 4d10 0
55	5 132.905 Cesium [Xe] 6s1 +1	56 137.327 Ba Barium [Xe] 652 +2	Lanthanide Series	72 178.49 Hf Hafnium [Xe] 4f14 5d2 6s2 +4	73 180.948 Ta Tantalum [Xe] 4f14 5d3 6s2 +5	74 183.84 W Tungsten [Xe] 4114 5d4 6s2 +6	75 186.207 Re Rhenium [Xe] 4114 5d5 6s2 +4,67	76 190.23 Osmium [Xe] 4114 5d6 6s2 +3,4	77 192.217 Iridium [Xe] 4f14 5d7 6s2 +3,4	78 195.078 Platinum [X9] 4114 509 651 +2,4	79 196.967 Au Gold [Xe] 414 5d10 6s1 +1,3	80 200.59 Hg Mercury [Xe] 4114 5d10 6s.2 +1,2	81 204.383 TI Thallium [Hg] 6p1 +1,3	82 207.2 Pb Lead (Hg) 6p2 +2,4	83 208.98 Bi Bismuth [Hg] 6p3 +3,5	84 209 Polonium [Hg] 6p4 +2.4	85 210 At Astatine (Hg) 6p5 0	86 Rad (Hg) 4 0
87	7 223 Fr Francium (Ro) 751 +1	88 226 Ra Radium [Rn] 7s2 +2	Actinide Series	104 261 Rf Rutherfordium NB +4	105 262 Db Dubnium VB 0	106 266 Sg Seaborgium VIB 0	107 264 Bh Bohrium VIB 0	108 277 HS Hassium VIIB 0	109 268 Mt Meitnerium VIIB 0	110 281 DS Darmstadtium VIIB 0	111 272 Rg Roentgenium B 0	112 285 Copernicium IB 0	113 Na Uut Ununtrium IIA 0	114 289 Uuq Ununquadium WA 0	115 n/a Uup Ununpentiur 0	5	-	
		Lanthanides	57 138.906 La Lanthanum [Xe] 5d1 6s2 +3	58 140.116 Ce Cerium [Xe] 411 5d1 6s2 +3.4	59 140.908 Pr Praseodymium [Xe] 4/3 6s2 +3	60 144.24 Nd Neodymium [Xe] 414 6s2 +3	61 145 Pm Promethium (Xe) 415 6s2	62 150.36 Sm Samarium [Xe] 415 6s2 +2,3	63 151.964 Eu Europium [Xe] 417 6s2	64 157.25 Gd Gadolinium [Xe] 417 5d1 6s2 +3	65 158.925 Tb Terbium [Xe] 419 6s2 +3	66 162.5 Dy Dysprosium [Xe] 4110 652 +3	67 164.93 HO Holmium [Xe] 4111 652	68 167.259 Er Erbium [Xe] 4112 662	69 168.9 Tm Thulium (Xe) 4113 652			
		Actinides	89 227 AC Actinium (Rn) 6d1 7s2	+3,4 90 232.038 Th Thorium [Rn] 6d2 7s2	91 231.036 Pa Protactinium	+3 92 238.029 U Uranium	93 237 Np Neptunium	94 244 Pu Plutonium	95 243 Americium	96 247 Cm Curium	97 247 Bk Berkelium	98 251 Cf Californium	99 252 Es Einsteinium	100 257 Fm Fermium	101 2 Md Mendeleviu	Dmit	ri Mende	leev

- Many elements, listed in the periodic table, are not useful for commercial magnetic products.
- These include: artificially created elements, toxic elements, truly rare elements, those elements that do not contribute to the magnetic moment, inert elements, and elements that will react to form salts (rock-forming elements).
- When we eliminate the magnetically non-useful elements from the periodic table, we are left with those shown highlighted.
- These have been the elements researched individually and in combination for over 150 years.
- Most current research is therefore focused on: 1) creating modified atomic structures via nano-technology with exchange coupling of high saturation magnetization and high anisotropy field (coercivity) materials 2) combined with esoteric manufacturing techniques resulting in modified structures.



- I've included this slide on Heusler alloys due to the interesting crystalline structure.
- They were first identified as a family of materials in 1905 and have found recent revival in spintronics.
- A Heusler alloy is a ferromagnetic metal alloy based on a Heusler phase. Heusler phases are intermetallics with particular composition and face-centered cubic crystal structure. They are ferromagnetic—even though the constituting elements [need not be]—as a result of the double-exchange mechanism between neighboring magnetic ions. The latter are usually manganese ions, which sit at the body centers of the cubic structure and carry most of the magnetic moment of the alloy.

(Wikipedia)

- In addition to the importance in current research of crystal structure is the importance of thermal processing to develop optimal microstructure.
- With the exception of ceramic (hard ferrite) magnets, magnetic alloys are just that alloys of metals.
- Therefore, thermal treatments to form the stable and desirable phase structure are necessary.
- For example, in this chart Strnat shows the development of the hysteresis loop of Sm2Co17 during its thermal treatment.

- In another example, alnico is solution treated at high temperature (about 1230 °C) followed by a conditioning treatment effected by controlled cooling from the solution treatment temperature (e.g. alnico 5) or by isothermal treatment of the magnets anisotropic magnets (alnico 5-7 and 9) are treated in a field during spinodal decomposition at ~820 °C, slightly below the Curie temperature.
- The third and final treatment is called a "draw" or coercive aging treatment to obtain maximum coercivity and optimal loop shape.
- We might say that the right composition provides the opportunity and the correct thermal treatment creates the best phase structure.

