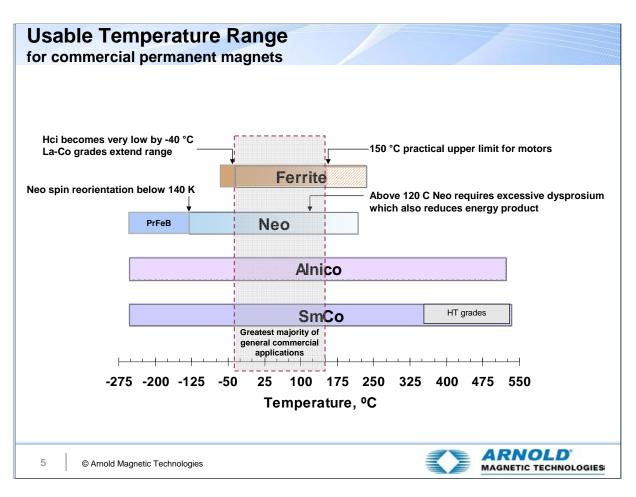
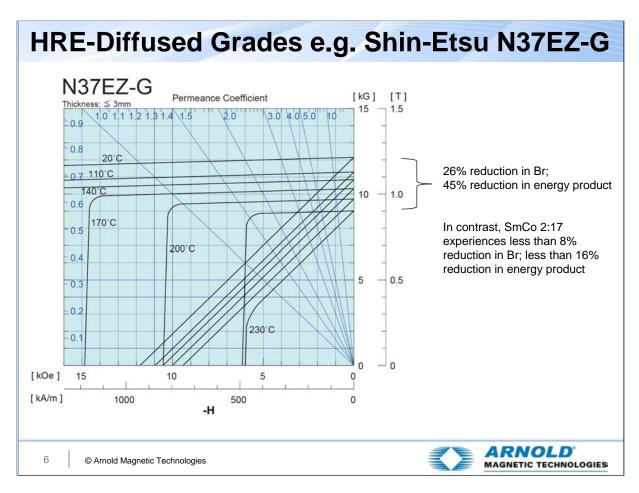

• Permanent magnets are ubiquitous, critical products that support our standard of living and quality of life in manifold ways.



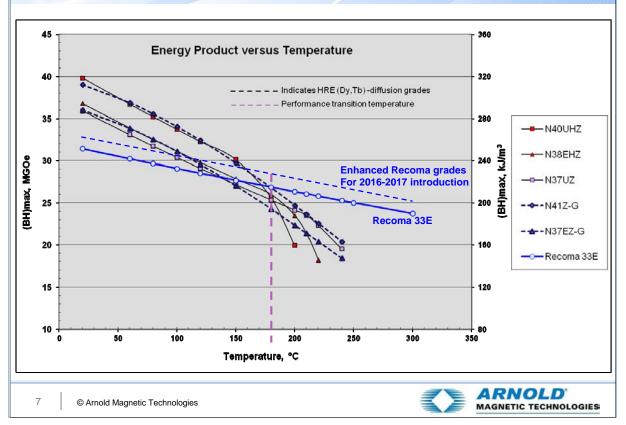

- First a quick introduction to Arnold the company I've worked for since 1992.
- Arnold's history in magnetics and magnetic materials extends back to 1895 and has included almost every commercially supplied permanent and soft magnetic product.
- Today Arnold is focused on: SmCo, Alnico and bonded permanent magnets; precision thin metals both magnetic and non-magnetic; magnetic assemblies for motors, magnetic levitation, sensing and separation technologies; and most recently we have responded to customer requests to develop and supply ultra-high performance permanent magnet motors for select applications.

| Magnet alternatives   |                                                                  |
|-----------------------|------------------------------------------------------------------|
| Constituent materials |                                                                  |
| Magnet supply chain   |                                                                  |
| Changing markets      |                                                                  |
| The forecast          |                                                                  |
|                       |                                                                  |
|                       | ARNOLD                                                           |
|                       | Constituent materials<br>Magnet supply chain<br>Changing markets |


• Here are the five subject areas we'll cover today.



- One of the most well known magnet figures of merit is energy product.
- A chart presentation of energy product development over time graphically emphasizes the improvements.
- By the way, all the materials in this chart are still used in selected applications where their combination of price and performance is superior to the others.
- For example, even though ferrite magnets are far weaker than the rare earths, they continue to dominate in sales on a weight basis representing over 85% of permanent magnets sold in the free world.
- However, the focus on device low weight and small size has driven up usage of rare earth magnets so that neo magnets now represent over half of all magnet sales on a dollar basis.




- Magnetic performance is not constant as temperature changes so do key material parameters.
- Each of the four commercially important materials can be effectively utilized over a limited temperature range.
- Neo (NdFeB) magnets are limited to above 140 K and their high temperature performance is compromised by loss of resistance to demagnetization.
- Ferrite magnets exhibit lower flux output with increasing temperature so that by 150 degrees Celsius, flux output is reduced by 25 percent.
- However, both Alnico and SmCo can be used from near absolute zero to over 500 degrees Celsius.



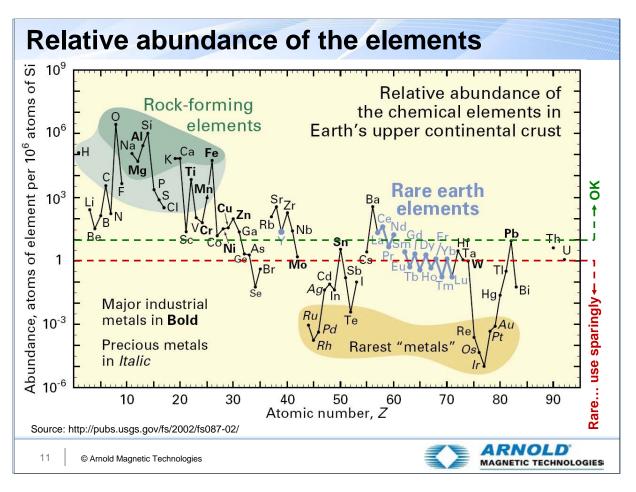
- The recently developed technology of diffusing heavy rare earth into the grain boundary of Neo magnets has provided a dramatic increase in resistance to demagnetization. However, Neo loses significant flux output with increasing temperature and from 20 to 230 degrees there is a 26% reduction in Br which equates to a 45% reduction in energy product energy product changes approximately as the square of the change in Br.
- SmCo, on the other hand, is a true high temperature-capable magnet material, losing only 1/3 as much as Neo.

# **Product Comparison – Energy Product**



- This chart exemplifies the difference in change in energy product as a function of temperature for several grades of Neo and for SmCo.
- Above 150 degrees, SmCo outperforms Neo in both energy product and resistance to demagnetization.

| Agenda         |                       |                       |
|----------------|-----------------------|-----------------------|
|                |                       |                       |
|                | Magnet alternatives   |                       |
|                | Constituent materials |                       |
|                | Magnet supply chain   |                       |
|                | Changing markets      |                       |
|                | The forecast          |                       |
|                |                       |                       |
|                |                       |                       |
| 8 © Arnold Mag | netic Technologies    | MAGNETIC TECHNOLOGIES |


• To better enable us to understand the market surrounding magnets it is advantageous to see what materials, i.e. elements, go into magnets.

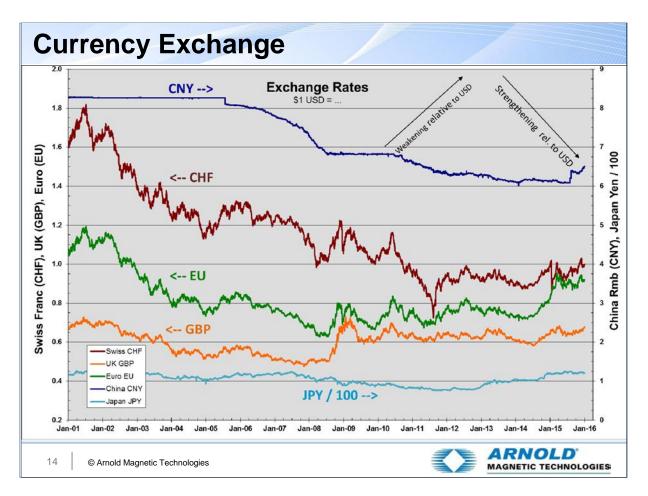
| Group<br>IA                             | 0 <b>1</b>     |                                               | No syn                                           | thetic,                                                         | no rad                                                  | ioactiv                                                | e, no in                                                  | ert, no                                             | toxic,                                             | no rare                                             | , no sa                                               | lt-form                                                  | ing elei                                         | nents,                                                   | no hyd                                                      | lrogen                                                      |                                                            | 1<br>VII<br>2           |
|-----------------------------------------|----------------|-----------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|-------------------------|
| H<br>Hydrog<br>1s1<br>+1,-1             |                | 2<br>IIA                                      |                                                  |                                                                 |                                                         |                                                        |                                                           |                                                     |                                                    |                                                     |                                                       |                                                          | 13<br>IIIA                                       | 14<br>IVA                                                | 15<br>VA                                                    | 16<br>VIA<br>15.9994                                        | 17<br>VIIA                                                 | H<br>Heli<br>VI         |
| Li<br>Lithiur<br>(He) 2s'<br>+1         |                | Beryllium<br>[He] 252<br>+2                   | Gas<br>Categ                                     | e at STP<br>Liquid<br>gories<br>Vkal Metals<br>ine Earth Metals |                                                         | Synthetic<br>Noble Gas<br>Halogens                     |                                                           |                                                     |                                                    |                                                     |                                                       |                                                          | Boron<br>IIA<br>+3                               | Carbon                                                   | Nitrogen<br>VA<br>+1,2,3,4,5/-1,2,3                         | Oxygen<br>VIA<br>-2                                         | Fluorine                                                   | Ne<br>V                 |
| 11 22<br>Na<br>Sodiui<br>[Ne] 35<br>+1  | ım I           | 2 24.305<br>Mg<br>Magnesium<br>[Ne] 352<br>+2 | Rar                                              | insition Metals<br>re Earth Metals<br>Poor Metals<br>4<br>IVB   | 5<br>VB                                                 | Non-metals<br>Metalloids<br>6<br>VIB                   | 7<br>VIIB                                                 | 8<br>VIII                                           | 9<br>VIII                                          | 10<br>VIII                                          | 11<br>IB                                              | 12<br>IIB                                                | 13 26.9815<br>Aluminum                           | 14 28.0855<br>Silicon                                    | 15 30.9736<br>P<br>Phosphorus<br>VA<br>+3,5/-3              | 16 32.065<br>Sulfur<br>VIA<br>+4,6/-2                       | 17 35.453<br>Cl<br>Chlorine<br>VIA<br>+1,5,7/-1            | 18<br>Arg               |
| 19 39<br>K<br>Potassi<br>[Ar] 451<br>+1 |                | 0 40.078<br>Calcium<br>[Ai] 452<br>+2         | 21 44.9559<br>Scandium<br>[Ar] 3d1 452<br>+3     | 22 47.867<br>Ti<br>Titanium<br>[Ar] 3d2 4s2<br>+2,3,4           | 23 50.9415<br>V<br>Vanadium<br>[At] 3d3 4s2<br>+2,3,4,5 | 24 51.9961<br>Cr<br>Chromium<br>[Ar] 3d5 4s1<br>+2,3,6 | 25 54.938<br>Manganese<br>[Ar] 3d5 4s2<br>+2,3,4,7        | 26 55.845<br>Fe<br>Iron<br>[At] 3d6 4s2<br>+2,3     | 27 58.9332<br>CO<br>Cobalt<br>[Ar] 3d7 4s2<br>+2,3 | 28 58.6934<br>Nickel<br>[Ar] 3d8 452<br>+2,3        | 29 63.546<br>Cu<br>Copper<br>[At] 3d10 4s1<br>+1,2    | 30 65.409<br>Zn<br>Zinc<br>[Ar] 3d10 4s2<br>+2           | 31 69.723<br>Gallium<br>[M] 3d10 4s2 4p1<br>+3   | 32 72.64<br>Ge<br>Germanium<br>[Ar] 3d10 4s2 4p2<br>+2,4 | 33 74.9216<br>As<br>Arsenic<br>[Ar] 3d10 4s2 4p3<br>+3,5/-3 | 34 78.96<br>Selenium<br>[Ar] 3d10 4s2 4p4<br>+4,6/-2        | 35 79.904<br>Br<br>Bromine<br>[Ar] 3d10 4s2 4p5<br>+1,5/-1 | 36<br>Kryj<br>[Ar] 3d10 |
| Rubidit<br>(Kr) 5s1<br>+1               | )<br>ium<br>i1 | 8 87.62<br>Strontium<br>[Kr] 5s2<br>+2        | 39 88.9059<br>Y<br>Yttrium<br>[Kr] 4d1 5s2<br>+3 | 40 91.224<br>Zr<br>Zirconium<br>[Kr] 4d2 5s2<br>+4              | 41 92.9064<br>Niobium<br>[Kr] 4d4 5s1<br>+3,5           | 42 95.94<br>Mo<br>Molybdenum<br>[Kr] 4d5 5s1<br>+6     | 43 98<br>TC<br>Technetium<br>[Kr] 4d5 5s2<br>+4,7         | 44 101.07<br>Ru<br>Ruthenium<br>[Kr] 4d7 5s1<br>+3  | 45 102.906<br>Rh<br>Rhodium<br>[Kr] 4d8 5s1<br>+3  | 46 105.42<br>Pd<br>Palladium<br>[Kr] 4d10<br>+2,4   | 47 107.868<br>Ag<br>Silver<br>[Kr] 4d10 5s1<br>+1     | 48 112.411<br>Cd<br>Cadmium<br>[Kr] 4d10 5s2<br>+2       | 49 114.818<br>Indium<br>[Kr] 4d10 5s2 5p1<br>+3  | 50 118.71<br>Sn<br>Tin<br>[Kr] 4d10 5s2 5p2<br>+2,4      | 51 121.76<br>Sb<br>Antimony<br>[Kr] 4d10 5s2 5p3<br>+3,5/-3 | 52 127.6<br>Te<br>Tellurium<br>[Kr] 4d10 5s2 5p4<br>+4,6/-2 | 53 126.904<br>Iodine<br>[Kr] 4d10 5s2 5p5<br>+1,5,7/-1     | 54<br>Xer<br>(Kr) 4d1   |
| 55 13<br>Cesiur<br>[Xe] 65'<br>+1       | Im             | 6 137.327<br>Ba<br>Barium<br>[Xe] 652<br>+2   | Lanthanide<br>Series                             | 72 178.49<br>Hf<br>Hafnium<br>[Xe] 4f14 5d2 6s2<br>+4           | 73 180.948<br>Ta<br>Tantalum<br>(Xe) 4f14 5d3 6s2<br>+5 | 74 183.84<br>W<br>Tungsten<br>[Xe] 4114 5d4 6s2<br>+6  | 75 186.207<br>Re<br>Rhenium<br>[Xe] 4114 5d5 6s2<br>+4,67 | 76 190.23<br>Osmium<br>[Xe] 4114 5d6 6s2<br>+3,4    | 77 192.217<br>Iridium<br>[Xe] 4114 5d7 6s2<br>+3,4 | 78 195.078<br>Platinum<br>[X9] 4114 509 601<br>+2.4 | 79 196.967<br>Au<br>Gold<br>(Xe) 414 5d10 6s1<br>+1,3 | 80 200.59<br>Hg<br>Mercury<br>(Xe) 4114 5d10 6s2<br>+1,2 | 81 204.383<br>TI<br>Thallium<br>(Hg) 6p1<br>+1,3 | 82 207.2<br>Pb<br>Lead<br>(Hg) 6p2<br>+2,4               | 83 208.98<br>Bi<br>Bismuth<br>[Hg] 6p3<br>+3,5              | 84 209<br>Polonium<br>(Hg) 6p4<br>+2,4                      | 85 210<br>At<br>Astatine<br>(Hg) 6p5<br>0                  | 86<br>Ra<br>(Hg)        |
| Franciu<br>[Rn] 7s<br>+1                |                | Radium<br>[Rn] 7s2<br>+2                      | Actinide<br>Series                               | 104 261<br>Rf<br>Rutherfordium<br>+4                            | Db<br>Dubnium<br>VB<br>0                                | Seaborgium                                             | Bohrium<br>VIB<br>0                                       | 108 277<br>HS<br>Hassium<br>VIIB<br>0               | Meitnerium<br>VIIB<br>0                            | Darmstadtium                                        | Roentgenium                                           | 112 285<br>Copernicium                                   | 113 n/a<br>Uut<br>Ununtrium<br>IIA<br>0          | Ununquadium                                              | 115 №a<br>Uup<br>Ununpentium<br>0                           | 116 292<br>Ununhexium<br>VIA<br>0                           | Ununseptium                                                | Unun                    |
|                                         |                | Lanthanides                                   | 57 138.906<br>La<br>Lanthanum<br>[Xe] 5d1 6s2    | 58 140.116<br>Ce<br>Cerium<br>[Xe] 411 5d1 6s2<br>+3,4          | 59 140.908<br>Pr<br>Praseodymium<br>[Xe] 413 6s2<br>+3  | 60 144.24<br>Nd<br>Neodymium<br>[Xe] 414 652<br>+3     | 61 145<br>Pm<br>Promethium<br>[Xe] 415 652                | 62 150.36<br>Sm<br>Samarium<br>[Xe] 415 652<br>+2,3 | 63 151.964<br>Europium<br>[Xe] 477 652<br>+7.3     | 64 157.25<br>Gd<br>Gadolinium<br>[Xe] 417 5d1 6s2   | 65 158.925<br>Tb<br>Terbium<br>[Xe] 419 6s2<br>+3     | 66 162.5<br>Dy<br>Dysprosium<br>[Xe] 4110 652            | 67 164.93<br>HO<br>Holmium<br>[Xe] 4111 652      | 68 167.259<br>Erbium<br>[Xe] 412 652                     | 69 168.934<br>Tm<br>Thulium<br>(Xe) 4113 652                | 70 173.04<br>Yb<br>Ytterbium<br>[Xe] 4114 652<br>+2 3       | 71 174.967<br>Lu<br>Lutetium<br>[Xe] 4114 5d1 6s2<br>+3    |                         |
|                                         |                | Actinides                                     | 89 227<br>AC<br>Actinium<br>(Rn) 6d1 7s2         | 90 232.038<br>Th<br>Thorium<br>[Rn] 6d2 7s2                     | 91 231.036<br>Pa<br>Protactinium                        | 92 238.029<br>U<br>Uranium                             | 93 237<br>Np<br>Neptunium                                 | 94 244<br>Pu<br>Plutonium                           | 95 243<br>Am<br>Americium                          | 96 247<br>Cm<br>Curium                              | 97 247<br>Bk<br>Berkelium                             | 98 251<br>Cf<br>Californium                              | 99 252<br>Es<br>Einsteinium                      | Frm Fermium                                              | 101 258<br>Md<br>Mendelevium                                | 102 259<br>No<br>Nobelium                                   | 103 262<br>Lr<br>Lawrencium                                |                         |

- This copy of the periodic table has numerous elements "grayed-out".
- These include the radioactive, rare, synthetic, inert, salt-forming and other elements that do not contribute to making a good magnet product.
- We're down to 36 elements with which to make magnet materials.
- Let's ask a question: what elements have been used over the last 150 years to make magnetic materials?

| Elements               | in    | E       | xis    | sti  | ng | N  | laç | gno   | eti    | c N    | <b>Aaterials</b>                         |
|------------------------|-------|---------|--------|------|----|----|-----|-------|--------|--------|------------------------------------------|
|                        | Maj   | or co   | onstit | uent | ts |    | Min | or co | onstit | uents  | Comments                                 |
| Soft Magnetic Material | S     |         |        |      |    |    |     |       |        |        |                                          |
| Iron                   | Fe    |         |        |      |    |    |     |       |        |        | Low carbon mild steel                    |
| Silicon Steel          | Fe    |         |        |      |    |    | Si  |       |        |        | Si at 2.5 to 6%                          |
| Nickel-Iron            | Fe    | Ni      |        |      |    |    |     |       |        |        | Ni at 35 to 85%                          |
| Moly Permalloy         | Ni    | Fe      |        |      |    |    | Мо  |       |        |        | Ni at 79%, Mo at 4%, bal. Fe             |
| Iron-Cobalt            | Fe    | Со      |        |      |    |    | V   |       |        |        | 23 to 52% Co                             |
| Soft Ferrite           | Fe    | Mn      | Ni     | Zn   |    |    | 0   |       |        |        | Oxygen dilutes, required for structu     |
| Metallic Glasses       | Fe    | Со      | Ni     |      |    |    | В   | Si    | Ρ      |        | Amorphous and nanocrystalline            |
| Permanent Magnets      |       |         |        |      |    |    |     |       |        |        |                                          |
| Co-Steels              | Fe    | Со      |        |      |    |    |     |       |        |        |                                          |
| Alnico                 | Fe    | Ni      | Со     | AI   | Cu |    | Ti  | Si    |        |        |                                          |
| Platinum Cobalt        | Pt    | Со      |        |      |    |    |     |       |        |        |                                          |
| Hard Ferrites          | Fe    | Sr      |        |      |    |    |     |       |        |        | Oxygen dilutes; Ba no longer used        |
| SmCo                   | Со    | Sm      | (Gd)   |      | Cu | Zr |     |       |        |        | Sm is underutilized; excess supply       |
| Neodymium-iron-boror   |       | Nd      | Dy     | (Y)  | В  | Со | Cu  | Ga    | Al     | Nb     |                                          |
| Cerium-iron-boron      | Fe    | Nd      | Ce     | В    |    |    |     |       |        |        | Limited use in bonded magnets            |
| SmFeN                  | Fe    | Sm      | N      |      |    |    |     |       |        |        | Nitrogen is interstitial; stability issu |
| MnBi                   | Mn    | Bi      |        |      |    |    |     |       |        |        | Never commercialized                     |
| MnAl(C)                | Mn    | Al      |        |      |    |    | Cu  | С     |        |        | Not successfully commercialized          |
|                        |       |         |        |      |    |    |     |       |        |        |                                          |
| 10 © Arnold Magnetic   | Techn | ologies |        |      |    |    |     |       |        | AIIIn. | ARNOLD<br>MAGNETIC TECHNOLOGIES          |

- This list contains most (though not all) common magnetic materials and the elements used to make them.
- These are the same elements selected on the periodic table.
- Elements shown here in red are too rare for practical use in all but very special applications.
- Elements in light green may be used, but are better consumed in modest percentages.
- Those in **bold-face** green are abundant and readily available.
- Take a good look and then we'll move to the next slide showing them in a chart created by the USGS showing elemental abundance.




- Placement of the green and red dashed lines is based on experience with elements in known magnetic materials.
- For example, note that PtCo is a fairly good permanent magnet material, but because Pt is truly rare, it is very expensive and PtCo magnets are seldom used.
- And if PtCo were used in larger quantities, the price of Pt would respond by rising dramatically.

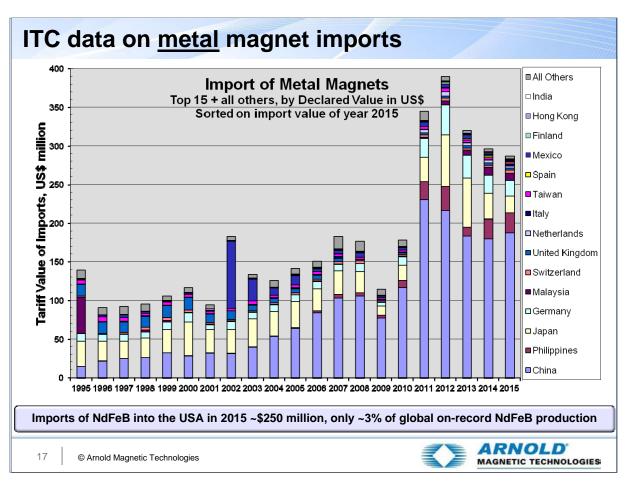
| Agenda          |                             |
|-----------------|-----------------------------|
|                 |                             |
|                 | Magnet alternatives         |
|                 | Constituent materials       |
|                 | Magnet supply chain         |
|                 | Changing markets            |
|                 | The forecast                |
|                 | Balancing Supply and Demand |
| 12 © Arnold Mag | gnetic Technologies         |

• Balance of supply and demand within the market and the supply chain into the magnet market is key to preventing disruptive pricing changes.



- Supply-demand balance is difficult enough within localized regions, but across country boundaries and large distances, it is a true challenge.
- These are just some of the issues faced in trying to maintain stability and consistency of supply and price in both the short and long term.




- One challenge, which is almost totally out of our control, is management of exchange rates for supply of raw materials, sale of product and domiciling of profits.
- For example, the shift in exchange rates for the Yuan versus the dollar and the Euro versus the dollar, between 2005 and 2014, showed 25% strengthening.

| Rare        | e Ear                                  | ths                          |               |                                      |                       | Cobalt           |                                          |         |                                            |       |
|-------------|----------------------------------------|------------------------------|---------------|--------------------------------------|-----------------------|------------------|------------------------------------------|---------|--------------------------------------------|-------|
| RE          | Ore                                    | China Au                     | otrolio/Mo    | laysia (Lynas)                       |                       | Country          | 2011 Mine Pro<br>Metric tor<br>Co-contai | nnes    | 2011 Refinery Pr<br>Metric ton<br>Co conte | nnes  |
|             | Ŷ                                      | India, Kazak                 |               |                                      |                       | Australia        |                                          | 3,850   |                                            | 4,72  |
| RE          | Oxide                                  |                              |               |                                      |                       | Belgium          |                                          | -       |                                            | 3,18  |
|             |                                        |                              |               |                                      |                       | Botswana         |                                          | 149     |                                            |       |
|             | Į                                      | China, (Ja                   | pan, Fran     | ice, other minor)                    |                       | Brazil           |                                          | 3,500   |                                            | 1,61  |
| DEI         | Metal                                  |                              |               |                                      |                       | Canada           |                                          | 7,071   |                                            | 6,03  |
| KE I        | vietai                                 |                              |               |                                      |                       | China            |                                          | 6,800   | 43%                                        | 35,00 |
|             | ļ                                      | China, Jap                   | oan, Molyo    | corp (USA), LCM (UK),                | "in-house"            | Congo (Kinshasa) | 55%                                      | 60,000  |                                            | 3,08  |
| DE          | A 11                                   | Ì                            | -             |                                      |                       | Cuba             |                                          | 4,000   |                                            |       |
| KE.         | Alloy                                  |                              |               |                                      |                       | Finland          |                                          | 535     |                                            | 10,44 |
| igure 42: F | stimated nu                            | unber of facilitie           | s and REO se  | eparation and refining capacity      | by country            | France           |                                          | -       |                                            | 35    |
| Bare tere   | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | lass resai                   |               | sparation and remming copacity       | 1 222 23 23           | India            |                                          | -       |                                            | 1,29  |
| Country     | Estimated<br>Number of                 | Estimated TREO<br>Production | Current       | Rare Earth Products Yielded          | Estimated<br>Capacity | Indonesia        |                                          | 1,600   |                                            |       |
| country     | Facilities                             | Capacity (tonnes)            |               |                                      | Utilization (%)       | Japan            |                                          | -       |                                            | 2,00  |
| China       | 59+                                    | 320.000                      | 83%           | Separated REOs, mixed REOs           | 33%                   | Madagascar       |                                          | 500     |                                            |       |
| Brazil      | 1                                      | 2.000                        | 0570          | Separated REOs, mixed REOs           | 8%                    | Morocco          |                                          | 2,159   |                                            | 1,78  |
| Estonia     | 1                                      | 3.000                        |               | Separated REOs                       | 90%                   | New Caledonia    |                                          | 3,240   |                                            |       |
| France      | 1                                      | 9.000                        |               | Separated REOs                       | 25%                   | Norway           |                                          | -       |                                            | 3,06  |
| India       | 2                                      | 2,500                        |               | Mineral concentrates                 | 80%                   | Philippines      |                                          | 2,200   |                                            |       |
| Kazakhstan  |                                        |                              |               |                                      |                       | Russia           |                                          | 6,300   |                                            | 2,33  |
|             | 1                                      | 4,000                        |               | RE chloride                          | 0%                    | South Africa     |                                          | 1,600   |                                            | 84    |
| Malaysia    | 2                                      | 22,600                       |               | Ds, mixed REOs, mineral concentrates | 45%                   | Uganda           |                                          | -       |                                            | 66    |
| Russia      | 1                                      | 4,000                        | Separ         | ated REOs, RE chloride, RE carbonate | 60%                   | Zambia           |                                          | 5,400   |                                            | 5,75  |
| U.S.        | 1                                      | 20,000                       |               | Separated REOs                       | 75%                   | Zimbabwe         |                                          | 86      |                                            |       |
| Vietnam     | 2                                      | 2 500                        | Senarated RFC | Os mixed REOs mineral concentrates   | 9%                    | Totals           |                                          | 109,000 |                                            | 82.20 |

- Diversity of material supply is also important.
- Why did REEs experience such an increase in pricing in 2011 while cobalt did not? Perhaps the answer lies in the supply chain's ability to react to market needs.
- Converting REO to metal is a constraint-point in the REE supply chain.
- There are few facilities outside China with the capability of processing rare earths on a commercial scale.
- On the other hand, cobalt is widely available not to say that a disruption in the Republic of the Congo (ROC) wouldn't have an impact on supply and pricing, but the market would be able to adjust relatively more quickly and effectively than for the current rare earth metal supply where China capacity is 83+ percent of the world total.

|                                                                                                     |         | China                                                                                                                | Japan & Korea                         | USA              | Europe                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| eriais ior and<br>e also, by far,                                                                   | ALNICO  | Atlas Magtech<br>Chengdu Amoeba<br>China Hope Magnet<br>HPMG<br>Shanghai Dao Ye<br><b>Many others</b>                | Pacific Metals                        | Arnold<br>T&S    | SG Magnets Ltd<br>Magnetfabrik Bonn<br>Magneti Ljubljana                                                                                                                              |
| production of raw materials for and<br>ent magnets. They are also, by far,<br>t market for magnets. | FERRITE | Anshang Dekang<br>BGRIMM<br>DMEGC<br>Dongyang Gelin<br>Jiangmen<br>>50 more                                          | Hitachi<br>SsangYong<br>TDK<br>Ugimag | Hitachi<br>TDK   | Magnetfabrik Bonn<br>Magnetfabrik Schramburg                                                                                                                                          |
| ermane<br>larges                                                                                    | SmCo    | Arnold<br>Chengdu Mag Mat'l<br>TianHe<br>Tiannu Group<br>>20 more                                                    | Hitachi<br>Shin-Etsu<br>TDK           | (Arnold)<br>EEC  | Arnold<br>Magnetfabrik Bonn<br>Magnetfabrik Schramburg<br>Vacuumschmelze                                                                                                              |
| Crima totally uorin<br>manufacture of pe<br>the                                                     | NdFeB*  | Anhui Earth-Panda<br>AT&M<br>BGMT<br>Ningbo Jinji<br>San Huan<br>Thinova<br>Yantai Zhenghai<br>Yunsheng<br>>250 more | Daido<br>Hitachi<br>Shin-Etsu<br>TDK  | (Hitachi)<br>*th | Magnetfabrik Bonn (not licensed)<br>Magnetfabrik Schramburg<br>Magneti Ljubljana (not licensed)<br>Vacuumschmelze<br>(Neorem)<br>e 8 listed companies are licensed to sell into the U |

- Downstream from the raw material supply are the manufacturers.
- This listing shows manufacturers of the four most common permanent magnet materials accurate as of January 2016.
- Chinese companies produce over 80% of each of the magnet materials and the Chinese economy consumes the greatest portion domestically, building the magnets into products for use domestically (within China) and for export products such as motors, appliances, and consumer electronics.
- Although there are few manufacturers of permanent magnets in north America, there are many companies that purchase magnets and pass them on to customers in the US and Canada.
- Magnet distributors typically just buy and resell while fabricators add value to the purchased magnets through machining and assembly.
- What quantity of magnets are purchased by these USA-located fabricators and distributors?



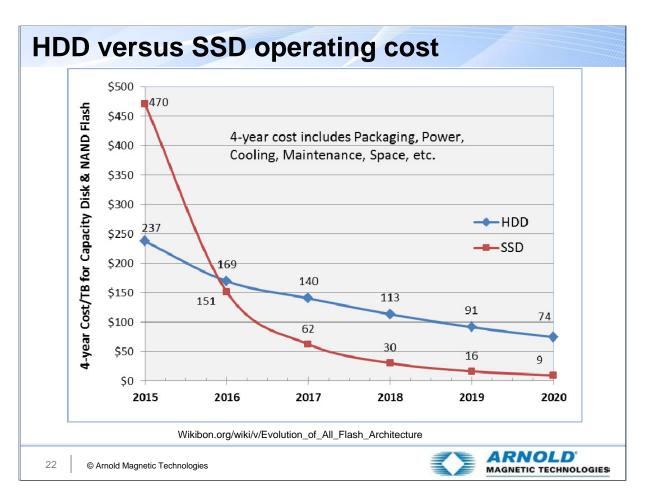
- The US ITC (International Trade Commission) keeps statistics on imports into the USA for many products including metal magnets.
- These are metal alloy materials that are, or are intended to be, used as magnets. (Magnets within products are not included).
- The metal magnet types include Neo, SmCo, FeCrCo, alnico, Vicalloy and similar materials.
- Neo magnets represent the greatest percentage of product both on a weight and dollar basis.
- The country list to the right of the chart is shown in the same sequence as the right-most bar of the chart with China at the bottom and "all other" at the top.
- The chart shows the country of importation, but not the country of origin. For example, there are no manufacturers of metal magnets in the Philippines or Malaysia. Are magnets funneled through these countries to avoid import tariffs?
- The values shown are US dollars and are the claimed value of the imported product, not the potential sales value within the USA.



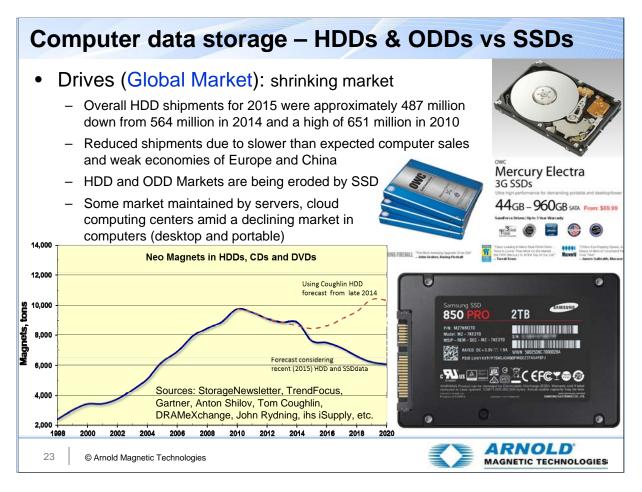
- Factors which make tracking of the magnet market difficult are:
- 1) So much of the market is now within China
- 2) China has a large number of manufacturers and
- 3) the market is not stable it is changing let's see how this is so.

| Ferrite magnet use                                                                                                                                                                                                                                                                |                                                                    |                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------|
| Greater than 88% of all permanent magnet                                                                                                                                                                                                                                          | ts on a we                                                         | ight basis.                |
| Motors - Automotive<br>Motors - Appliances<br>Motors - HVAC<br>Motors - Industrial & Commercial<br>Motors - All Other<br>Loudspeakers<br>Separation Equipment<br>Advertising & Promotional Products<br>Holding & Lifting<br>MRI<br>Relays & Switches<br>All Other - Miscellaneous | 18%<br>13%<br>12%<br>5%<br>9%<br>5%<br>5%<br>5%<br>3%<br>1%<br>11% | 70% in motors              |
| Sources: Numerous including Benecki, Clagett and Trout, personal communications with in                                                                                                                                                                                           | ndustrial partners, co                                             | nferences, suppliers, etc. |
| 19 © Arnold Magnetic Technologies                                                                                                                                                                                                                                                 |                                                                    | ARNOLD                     |

• For ferrite, about 70% of all ferrite magnets are used in motors. This number has not changed much over time.


| Rare Earth magnet use                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2010 data last updated June 2014                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Greater than 65% of all permanent magn                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ets on a \$\$ basis.                                                                                                                                                                                         |
| Motors, industrial, general auto, etc<br>HDD, CD, DVD<br>Electric Bicycles<br>Transducers, Loudspeakers<br>Magnetic Separation<br>MRI<br>Torque-coupled drives<br>Sensors<br>Generators<br>Hysteresis Clutch<br>Air conditioning compressors and fans<br>Energy Storage Systems<br>Wind Power Generators<br>Gauges<br>Magnetic Braking<br>Relays and Switches<br>Pipe Inspection Systems<br>Hybrid & Electric Traction Drive<br>Reprographics<br>Wave Guides: TWT, Undulators, Wigglers | 24.0% • Motor-type<br>16.3% • applications = 67%<br>8.4% •<br>8.1% •<br>4.6%<br>3.9%<br>3.3%<br>3.1%<br>3.0% •<br>2.8%<br>2.4% •<br>2.3% •<br>1.5%<br>1.5%<br>1.5%<br>1.5%<br>0.9%<br>0.8% •<br>0.6%<br>0.3% |
| Unidentified and All Other                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.6%                                                                                                                                                                                                         |
| Sources: Numerous including: Benecki, Clagett and Trout; Roskill; Kingsnorth; personal communicati                                                                                                                                                                                                                                                                                                                                                                                      | ions with industrial partners, conferences, suppliers, etc.                                                                                                                                                  |
| 20 © Arnold Magnetic Technologies                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                              |

- About 67% of Neo magnets are used in motors about the same as for ferrite.
- There are several more applications for rare earth magnets, especially Neo, due to improved temperature stability and much higher energy output.
- The market for Neo magnets, however, is undergoing large change.


### **Major and Developing Uses of Neo Magnets**

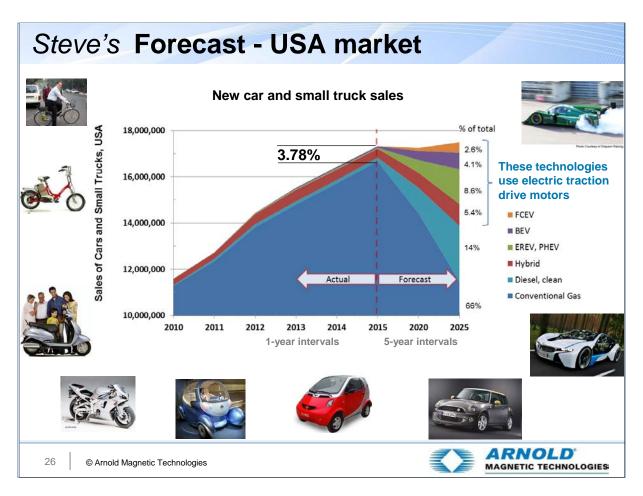
| • | <ul> <li>HDD (Global): mature products</li> <li>Magnet total weight consumed in 2015 is estimated = 7,500 tonnes</li> <li>Hybrid and electric cars &amp; trucks (Global): in growth phase</li> <li>Estimates of between 6 and 10 million hybrids to be manufactured in 2020</li> <li>Each hybrid vehicle utilizes an average of 2 kg of neo magnets in drive and other sensor and motor applications: electric power steering, electric brakes, e-Turbo, speakers, etc.</li> <li>Total neo magnet usage in 2015 = 7,000 rising to 17,000 tpa in 2020</li> </ul> |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • | <ul> <li>Wind turbines (Global): generation IV permanent magnet generators ramping up</li> <li>Between 200 (hybrid) and 500-600 kg (direct drive) neo magnets per MW output</li> <li>Replacement of a 500 MW (average-size) coal-fired power plant would require ~275 tonnes of neo magnets</li> <li>Global 2015 consumption = 8,500 tonnes</li> </ul>                                                                                                                                                                                                          |
| • | <ul> <li>EB (electric bicycles) (primarily in Asia): large and growing application</li> <li>65-350+ grams of neo magnets per EB</li> <li>20 million sold in China in 2009; forecast growth to 60 million per year globally in 2018</li> <li>Annual neo magnet usage = 6,000 rising to &gt;15,000 tpa by 2018</li> </ul>                                                                                                                                                                                                                                         |
| • | <ul> <li>Air Conditioning (primarily southeast Asia and India)</li> <li>In rapid growth phase</li> <li>Use permanent magnet reluctance type motors to achieve ~20% efficiency gains</li> <li>Neo in 2014= &gt;4,000 tonnes</li> </ul>                                                                                                                                                                                                                                                                                                                           |
| • | <ul> <li>Acoustic transducers</li> <li>More than 1.8 billion cell phones currently connected use speakers and vibrator motors</li> <li>Speakers in transportation – more than 280 million speakers per year</li> <li>Speakers, ear buds, headphones = &gt;4,500 tpa</li> </ul>                                                                                                                                                                                                                                                                                  |
|   | 2015: 6.8 billion cell phones are connected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 21 © Arnold Magnetic Technologies ARNOLD MAGNETIC TECHNOLOGIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

- The growth of and change in demand for magnet rare earth elements is and will be driven by many factors, not the least of which are these existing and new uses.
- Let's examine a few in a bit more detail.

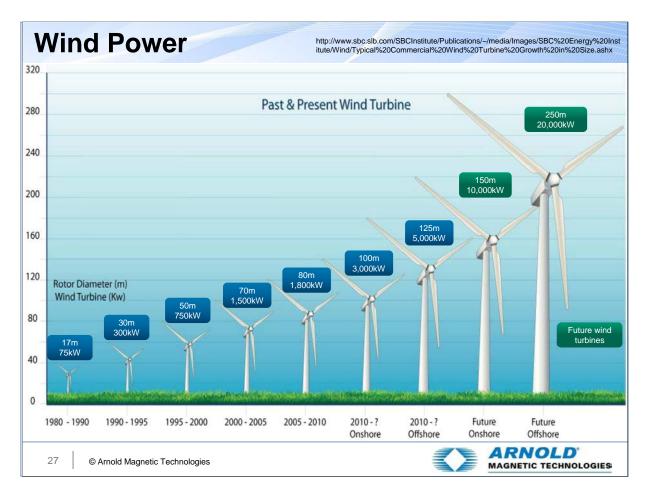


- Solid state memory (solid state drives, SSDs) have improved in performance and cost to where they often represent a viable alternative to HDDs.
- According to Wikibon, 2016 is a tipping year for the SSD-related competing information storage technologies.




- Neo magnets have been used in electronic devices such as hard disk drives, CDs and DVDs (optical disk drives, ODDs) where the magnet is used for driving the spindle motor, in the VCM for positioning the read/write head, and providing a clamping force (in some CDs and DVDs).
- Even though the amount used per drive is small, the huge quantity of devices requires large quantities of magnets.
- Importantly, these devices require little use of dysprosium.
- The HDD and ODD market is being eroded by expansion of SSD drives especially in portable devices.
- Continuing markets for HDDs are for servers and high end desktop systems.
- "The global demand for optical storage disc market is declining as a result of rapid adoption of new technologies such as cloud storage, Internet of Things (IoT) and Video on Demand. However, globally, increasing demand for archival solutions and positive outlook for the media and entertainment industry are expected to create a significant continuing demand for recordable optical discs. Increasing popularity of next generation optical disc for recording HD broadcasting, growing demand for content protection and widening application areas also act as factors supporting market growth."
- There are competing opinions about the future of HDDs. Tom Couglin forecasts a resurgence; I see too many comments about a decline in usage and forecast a decline.

| Iter    | native Powertrain                                                                                                                                                                                          | Types                                |  |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|
|         |                                                                                                                                                                                                            | Examples                             |  |
| HEV     | Hybrid Electric Vehicle<br>Uses both an electric motor and an internal<br>combustion engine to propel the vehicle.                                                                                         | Prius                                |  |
| PHEV    | Plug-In Hybrid Electric Vehicle (PHEV)<br>Plugs into the electric grid to charge battery -<br>is similar to a pure hybrid and also utilizes<br>an internal combustion engine.                              | Plug-in Prius                        |  |
| EREV    | <b>Extended Range Electric Vehicle (EREV)</b><br>Operates as a battery electric vehicle for a<br>certain number of miles and switches to an<br>internal combustion engine when the battery<br>is depleted. | Volt                                 |  |
| BEV     | Battery Electric Vehicle BEV)<br>Powered exclusively by electricity from it's<br>on-board battery, charged by plugging into<br>the grid                                                                    | Leaf; Tesla Model S                  |  |
| FCEV    | Fuel Cell (Electric) Vehicle (FCEV)<br>Converts the chemical energy from a fuel,<br>such as hydrogen, into electricity.                                                                                    | Honda FCX Clarity;<br>Hyundai Tuscon |  |
| 24 🛛 ©/ | Arnold Magnetic Technologies                                                                                                                                                                               |                                      |  |


- Transportation...
- There are many "alternative drive" types.
- This list shows most of them including one or more examples of each that are in production.
- Some use permanent magnet motors such as the Prius and Nissan Leaf, while some use induction motors such as the Tesla Model S.

| Manufacturer   | Hybrid  | PHEV   | BEV             | CNG   | Diesel  | Total   | Total%  |
|----------------|---------|--------|-----------------|-------|---------|---------|---------|
| Accura         | 272     | -      | -               | -     | -       | 272     | 0.04%   |
| Audi           | 97      | -      | -               | -     | 11,765  | 11,862  | 1.81%   |
| BMW            | 67      | 3,157  | 11,024          | -     | 11,602  | 25,850  | 3.95%   |
| Chrysler       | -       | -      | -               | -     | 57,462  | 57,462  | 8.77%   |
| GM             | 4,587   | 16,417 | 2,629           | -     | 3,282   | 26,915  | 4.11%   |
| Fiat           | -       | -      | 4,516           | -     | -       | 4,516   | 0.69%   |
| Ford           | 47,261  | 17,341 | 1,582           | -     | -       | 66,184  | 10.11%  |
| Honda          | 20,483  | 64     | 2               | 486   | -       | 21,035  | 3.21%   |
| Hyundai        | 19,908  | 15     | -               | -     | -       | 19,923  | 3.04%   |
| Infiniti       | 6,544   | -      | -               | -     | -       | 6,544   | 1.00%   |
| Jeep           | -       | -      | -               | -     | 3,790   | 3,790   | 0.58%   |
| Kia            | 11,492  | -      | 1,015           | -     | -       | 12,507  | 1.91%   |
| Land Rover     | -       | -      | -               | -     | 1,357   | 1,357   | 0.21%   |
| Lexus          | 36,331  | -      | -               | -     | -       | 36,331  | 5.55%   |
| Mercedes       | 64      | 118    | 1,906           | -     | 8,611   | 10,699  | 1.63%   |
| Mitsubishi     | -       | -      | 115             | -     | -       | 115     | 0.02%   |
| Nissan         | 2,245   | -      | 17,269          | -     | -       | 19,514  | 2.98%   |
| Porsche        | -       | 1,570  | -               | -     | 3,585   | 5,155   | 0.79%   |
| Smart          | -       | -      | 1,387           | -     | -       | 1,387   | 0.21%   |
| Subaru         | 5,589   | -      | -               | -     | -       | 5,589   | 0.85%   |
| Tesla          | -       | -      | 26,608          | -     | -       | 26,608  | 4.06%   |
| Toyota         | 228,708 | 4,191  | 18              | -     | -       | 232,917 | 35.56%  |
| Volkswagen     | 756     | -      | 4,232           | -     | 53,322  | 58,310  | 8.90%   |
| Volvo          | -       | 86     | -               | -     | -       | 86      | 0.01%   |
| TOTAL          | 384,404 | 42,959 | 72,303          | 486   | 154,776 | 654,928 | 100.00% |
| % of alt. fuel | 58.69%  | 6.56%  | 11. <b>0</b> 4% | 0.07% | 23.63%  | 100.00% |         |
| % of total Mkt | 2.22%   | 0.25%  | 0.42%           | 0.00% | 0.89%   | 3.78%   | ,       |

- Hybridcars.com tracks sales within the USA by drive type and manufacturer shown here.
- EREVs (Chevy Volt) are included in the PHEV column in this table.
- Although Diesel is not an electric drive vehicle, it represents a significant shift in power sources.
- For year 2015, all of these alternate power sources represent only 3.78% of USA sales of new cars and small trucks.
- This is well below market forecasts and is due at least in part to lower oil and gasoline prices.

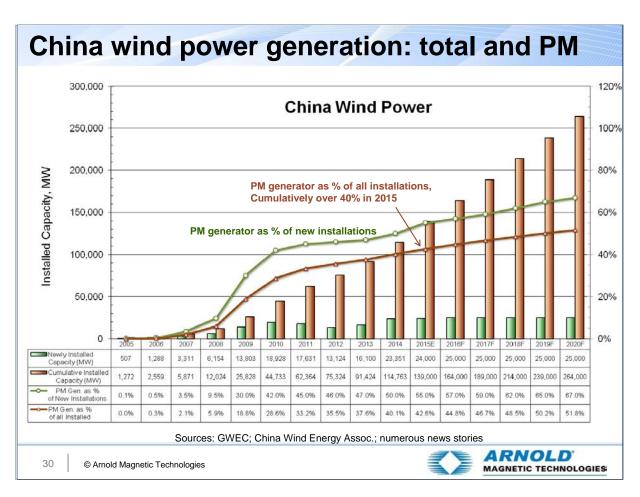


- In response to these overly optimistic forecasts, opinions have been sought regarding the development of the transportation industry.
- This chart is my attempt to show a consensus of the development of alternate drive systems by type and over time.
- Reasons why ICE (including clean diesel) will remain the primary source of tractive power, at least through 2025, are the technological advances being made to provide ever more efficient drive systems at modest price increase and using existing fuel distribution infrastructure with simultaneous "light-weighting" of the vehicles.
- Expansion in use of any type drive depends upon a range of factors including economic (e.g., gas prices), political (e.g., CAFÉ standards), and technical (e.g., greatly improved battery performance/cost).
- N.B.: the scale at the bottom is by year to 2015 and then by 5-year increments.

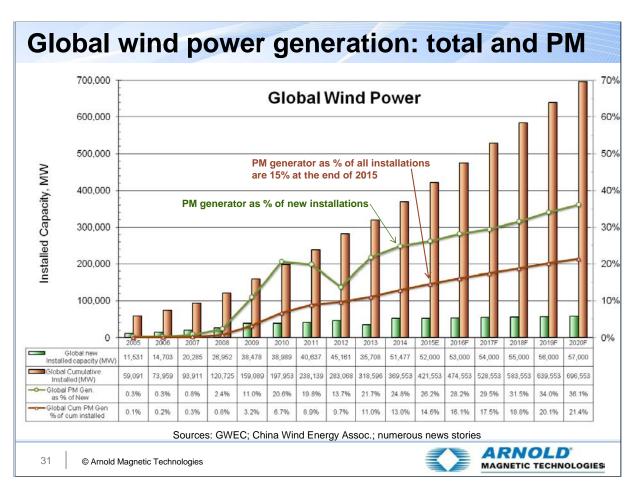


- Wind power is a renewable, "green" technology for producing electricity.
- The number of and size of installations continues to grow.
- The larger systems are targeted for off-shore use and the lower MW output towers primarily installed on land.

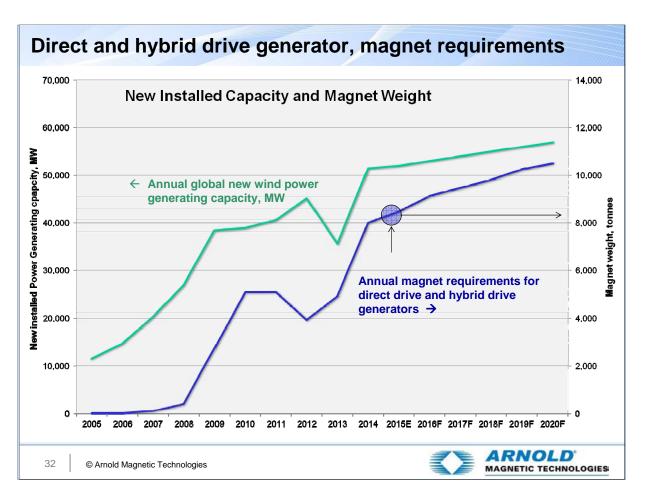



- Direct drive generators using permanent magnets represent an alternative to geared induction generators.
- Direct drive offers lower noise, lower weight (reduced tower cost) and ...and lower maintenance !
- Permanent magnet generators permit reducing the gear box to 2-stage (from 3) for hybrid (medium speed geared) drives or eliminating it altogether in direct drive generator systems.

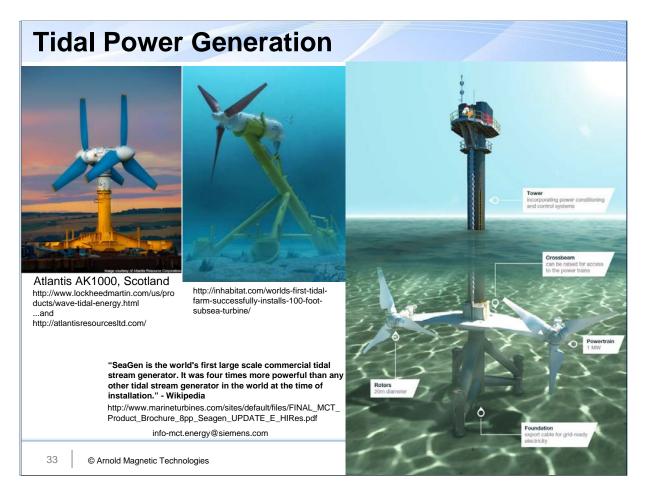
| Offshore | Turbine | develo | pment |
|----------|---------|--------|-------|
|----------|---------|--------|-------|


TOP TEN OFFSHORE TURBINES The wind industry's biggest, heaviest and most expensive products compared and contrasted

| Model                                                                                                                                     | IEC class     | Power rating | Rotor diameter               | Drive system | Noteworthy                                                                                                                                  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------|------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| MHI-Vestas V164-8.0MW<br>(Denmark)                                                                                                        | S             | 8MW          | 164m                         | MSG, PMG     | Clever combination of evolutionary and innovative design features;<br>flanged tube-shaped drivetrain, favourable 500-tonne head mass        |  |  |
| Ming Yang SCD 6.0 (China)                                                                                                                 | IIB           | 6MW          | 140m                         | MSG, PMG     | Innovative two-blade downwind turbine with compact semi-integrated<br>drivetrain and single rotor bearing, focused at typhoon-prone markets |  |  |
| Siemens SWT-6.0-154<br>(Germany)                                                                                                          | 1             | 6MW          | 154m                         | DD, PMG      | Single rotor bearing: largest rotor diameter in 6MW class, converter and transformer in nacelle; favourable head mass                       |  |  |
| Alstom Haliade 150-6MW<br>(France)                                                                                                        | 1             | 6MW          | 150.8m                       | DD, PMG      | Stationary main shaft (pin); "pure torque" principle decouples rotor-<br>bending moments and generator drive torque                         |  |  |
| Siemens SWT-4.0-130<br>(Germany)                                                                                                          | I             | 4MW          | 130m                         | HSG, IG      | Evolutionary development and optimisation of SWT-3.6-120 model, which<br>has been the offshore market leader for several years              |  |  |
| Senvion 6.2M152 (Germany)                                                                                                                 | S             | 6.15MW       | 152m                         | HSG, DFIG    | Developed from pioneering 5MW turbine introduced in 2004; prototype of<br>more powerful model with longer blades installed in 2014          |  |  |
| Areva M5000-135 (France)                                                                                                                  | S             | 5MW          | 135m                         | MSG, PMG     | Extensive upgrade of M5000-116 introduced in 2004; features clever<br>pioneering low-speed hybrid-drive design                              |  |  |
| Gamesa G128-5.0MW (Spain)                                                                                                                 | IB            | 5MW          | 128m                         | MSG, PMG     | Pioneer tube-type drivetrain; builds on 2009's G128-4.5MW platform;<br>new variant with 132m rotor diameter has been announced              |  |  |
| Hyundai HQ5500/140<br>(South Korea)                                                                                                       | I             | 5.5MW        | 140m                         | HSG, PMG     | Sister product of Dongfang 5.5MW, co-developed with AMSC; Sinovel<br>SL5000/SL6000 uses same AMSC product platform                          |  |  |
| Goldwind GW 6MW (China)                                                                                                                   | 1             | 6MW          | 150m                         | DD, PMG      | Specification not verified; initial design basis 5MW power rating                                                                           |  |  |
| BDFIG Brushless doubly-fer<br>CGFRE Carbon & glass-fibr<br>DD Direct drive<br>DFIG Doubly-fed induction (<br>EESG Electrically excited sy | re reinforced | epoxy        | HH Hub<br>HSG/LS<br>IG Induc |              | PCVS Pitch-controlled variable-speed<br>eared/Low-speed geared                                                                              |  |  |


- The largest generators have been designed for use off-shore.
- Of the current top ten generators, 8 are PM type.
- The largest at the date of the referenced publication is the MHI-Vestas 8.0 MW generator.




- Prior to 2005, China wind power installation was done on a limited basis by foreign companies.
- Between 2005 and 2010, the Chinese wind power industry became dominant.
- Probably due to the ready availability of Neo magnets within China, a large percentage of installations have been of the permanent magnet type cumulatively through 2015, over 40%.

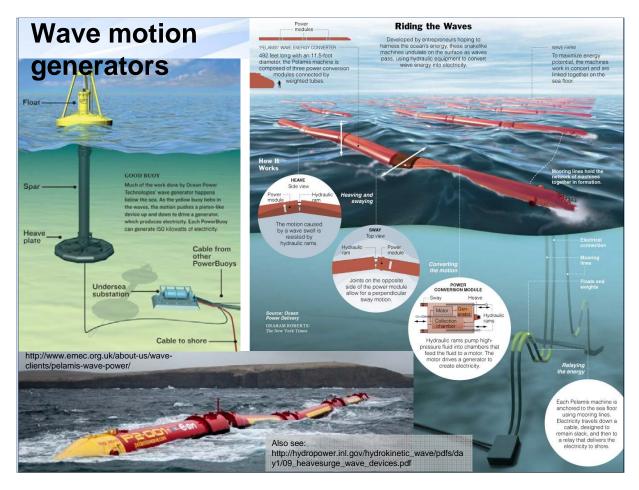


- The same information on a global basis is presented here.
- On a global basis only 15% are permanent magnet type generators.
- Direct drive and hybrid drive permanent magnet generators represent less than 1% of generators in North America and the UK (England and Scotland) and only a slightly higher percentage in Europe.



- Annual magnet requirements for this industry for 2015 are 8,500 tons of Neo.
- This is forecast to grow to >11,000 tons per year by 2020.
- Consumption of Neo in this market is highly dependent upon magnet price!




In addition to wind power...

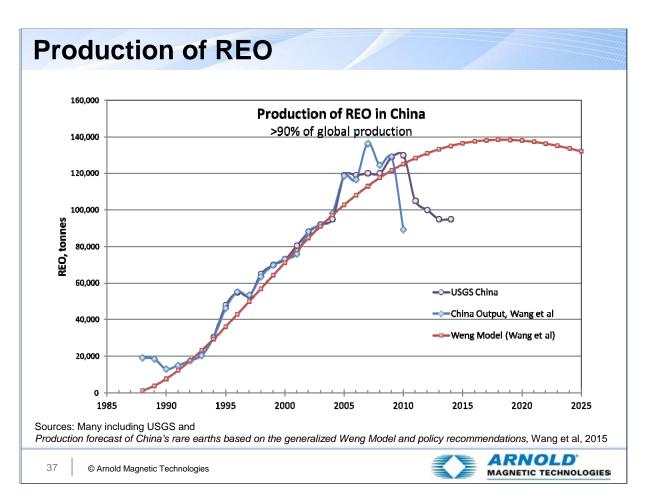
•Numerous companies are developing, testing and installing power generating facilities that depend on tidal current or wave motion.

•Water is far more dense than air, so higher output capacity is possible with smaller sweptarea devices.

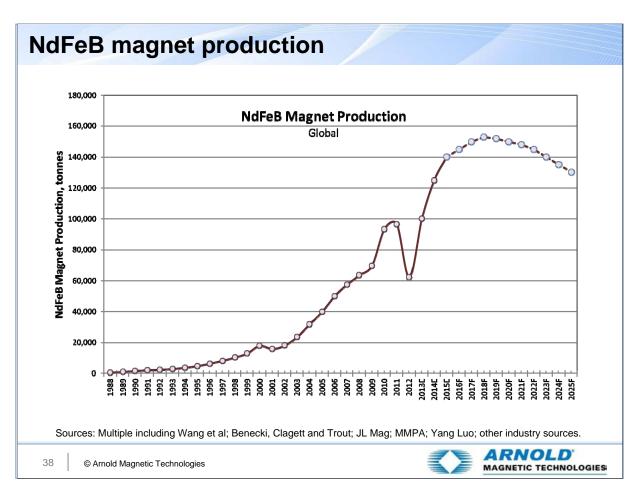
•The Atlantis AK1000 is pictured here prior to installation - testing has been completed and the unit decommissioned.

•SeaGen is a product of MCT which is now a wholly owned subsidiary of Siemens.




- In addition to the previously shown "propeller-type" generators, numerous other methods have and are being investigated to use movement of water to power electric generators including long undulating segments and bobbing buoys.
- These technologies are still immature, but likely to utilize rare earth permanent magnets due to the slow movement of wave motion.




- Some of the more conventional commercial small-magnet applications are shown here.
- For example, the "ear bud" magnet is approximately 0.2 gram per ear bud. At a production quantity of 200,000,000 units, total mass is about 40 tons of magnets.
- While this may seem like a lot, several magnet companies can produce over 5,000 tons per year 40 tons is therefore inconsequential to the overall market.
- Due to the small size of these devices, use of magnets other than rare earth magnets is not feasible.

| Agenda          |                       |                                  |
|-----------------|-----------------------|----------------------------------|
|                 |                       |                                  |
|                 | Magnet alternatives   |                                  |
|                 | Constituent materials |                                  |
|                 | Magnet supply chain   | State -                          |
|                 | Changing markets      |                                  |
|                 | The forecast          |                                  |
|                 |                       |                                  |
|                 |                       |                                  |
| 36 © Arnold Mag | netic Technologies    | ARNOLD'<br>MAGNETIC TECHNOLOGIES |

• Let's dust-off the proverbial crystal ball and see if we can forecast what is coming along for the magnet industry.



- Both the blue and the purple lines indicate published (public) figures for REO production in China.
- Since the USGS obtains its information from sources in China, it is reasonable for the two lines to be very similar. In fact they only diverge subsequent to 2006, but remain of similar shape and direction.
- The generalized Weng Model, shown here as the red chart line, is a widely used quantitative model for "exhaustible resource" forecasting.
- It shows a period of rapid growth, a peaking, and finally a decline.
- As suggested here, we are approaching a peak.
- Timing of the model is affected by discovery of new resources.
- Shape of the curve is affected by commodity pricing, acceptance in the market and numerous other factors including government intervention through such mechanisms as quotas, taxation or financial incentives.
- Therefore, the red line here is indicative, but in no way absolute.
- But do these curves accurately represent the availability of REO?



- The line in this chart is best estimate of Neo magnet production based on many sources and over many years.
- The dashed line is my estimate of Neo magnet production based on shifts in the market and is subject to adjustment.
- For example, more rapid development of the economy of India will increase and prolong the peak.
- Increased availability of rare earth magnet elements will shift the peak upwards.
- Etc.
- Now let's see what this indicates for required REO to make all these magnets...

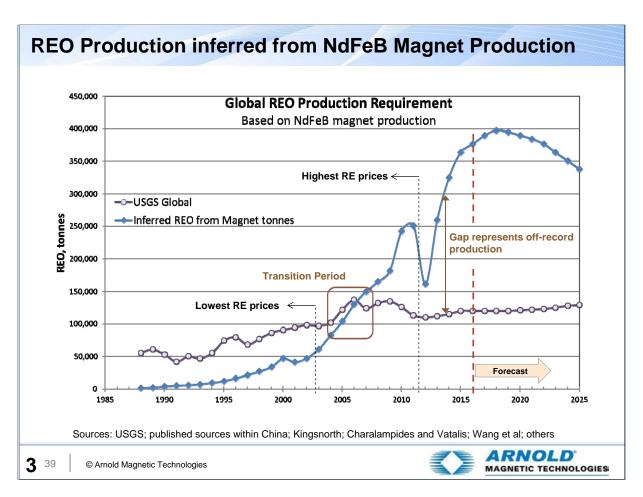
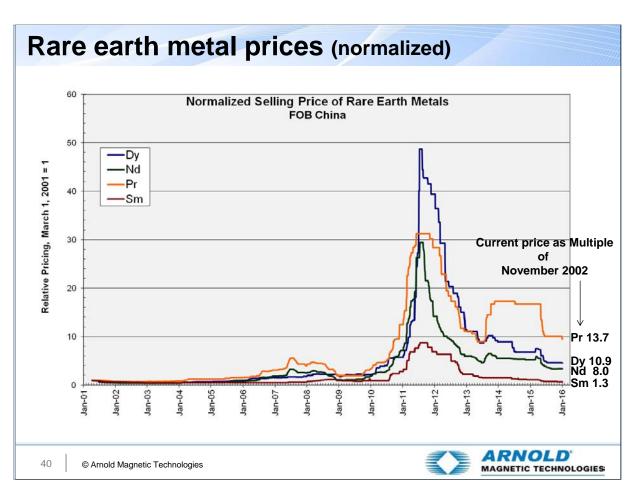


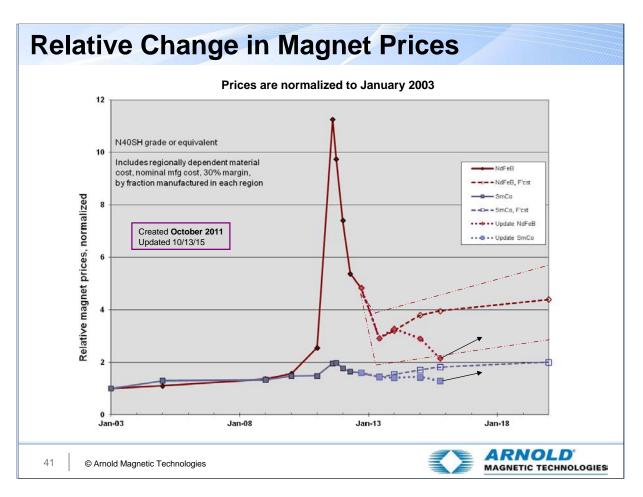

Chart explained:

•The purple line indicates published quantities of REO production (left scale).

•The blue line indicates the amount of REO required to produce the magnet quantities shown on the previous chart.


•The sharp drop (blue line) in 2012 was due to rapid and dramatic market contraction due to very high material prices in 2011.

•The market has since rebounded, less so in the West, but greatly so within China - (exports from China of REOs and metals are up only modestly since 2011).


•What we see is a huge gap between published REO output and REO required to produce known magnet quantities.

•The excess (black market) REO also explains, at least in part, why rare earth prices are continuing to remain low – even drop.

•What is remarkable is the amount of "off-record" production !



- This chart of RE metal pricing is normalized to March 2001 and is not inflation adjusted.
- Numbers at the right show the multiple of current price to metal prices in November 2002, when they reached their lowest.
- Samarium, which is in excess supply, if inflation adjusted, is lower in cost now than in 2002.
- The others have remained at greater multiples in part due to the higher cost of production as the result of imposition of environmental regulations.



- Excess raw material which is depressing commodity prices permits manufacture and sale of magnets at low prices.
- Reports from China indicate that the supply is stressed due to the low prices and they are unlikely to continue.
- I stand by my earlier forecast of relative magnet pricing, but when the prices will correct is uncertain.
- By some estimates, magnet production is between 30 and 50% of installed capacity.
- So between black market REO and excess magnet manufacturing capacity, it might take some time for the correction to occur.

### **Sales of Major PM Materials**

|                                                                                                                                                                                                                                                              | 2010 Actual |          |                  |          |  | 2016 Forecast |          |                  |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|------------------|----------|--|---------------|----------|------------------|----------|
|                                                                                                                                                                                                                                                              | tons        | <u>%</u> | <u>\$million</u> | <u>%</u> |  | <u>tons</u>   | <u>%</u> | <u>\$million</u> | <u>%</u> |
| NdFeB                                                                                                                                                                                                                                                        | 67,300      | 10.5%    | 5,700            | 65.1%    |  | 145,000       | 14.8%    | 10,365           | 68.0%    |
| SmCo                                                                                                                                                                                                                                                         | 2,310       | 0.4%     | 270              | 3.1%     |  | 3,864         | 0.4%     | 315              | 2.1%     |
| Ferrite                                                                                                                                                                                                                                                      | 567,000     | 88.2%    | 2,600            | 29.7%    |  | 822,000       | 84.1%    | 4,325            | 28.4%    |
| Alnico                                                                                                                                                                                                                                                       | 5,555       | 0.9%     | 125              | 1.4%     |  | 6,050         | 0.6%     | 160              | 1.1%     |
| Other                                                                                                                                                                                                                                                        | 540         | 0.1%     | 65               | 0.7%     |  | 570           | 0.1%     | 68               | 0.4%     |
| Totals                                                                                                                                                                                                                                                       | 642,705     | 100.0%   | 8,760            | 100.0%   |  | 977,484       | 100.0%   | 15,233           | 100.0%   |
| Issues distorting material sales balance include: 1) artificially low RE prices, 2) shift to light-weight technologies in transportation and portable devices, 3) increasing use of PM generators in wind and 4) slowing of major economies (China, Europe). |             |          |                  |          |  |               |          |                  |          |
| 42 © Arnold Magnetic Technologies ARNOLD MAGNETIC TECHNOLOGIES                                                                                                                                                                                               |             |          |                  |          |  |               |          |                  |          |

- Due to the relatively low prices and resulting high volume of Neo output, this table has seen significant shifts over the past year.
- Notably, Neo production is shown here <u>unconstrained</u> resulting in an increase in Neo % by both weight and dollars over the earlier table.
- Since Neo has increased so markedly, ferrite shows a decline on a percentage basis.
- Ferrite also shows this decline on an absolute basis since Neo is so affordable that some motor applications that had converted from Neo back to ferrite have now moved (at least in China) back to Neo.
- Markets and uses for alnico and other permanent magnets are well-established and not likely to experience major change.

## Wrapping it up



#### Magnet Alternatives

- The are a limited number of materials and each is a material-of-choice in selected applications
- Constituent materials
  - Elemental material options have been researched for 150+ years
  - A breakthrough is possible but not likely
- Magnet supply chain
  - 80+ percent of permanent magnets are made in China and consumed in China
  - Supply issues include all the variables shown on the "geopolitical slide"

#### • Changing markets

- Use of permanent magnets are being adapted to satisfy new technology requirements as well as a global, growing middle class
- Forecast
  - The off-record production of REOs and magnets is indicative of the difficulty governments have in attempting to control what would otherwise function as a "free market"

43

© Arnold Magnetic Technologies

