

# **RECOMA** The complete range of SmCo<sub>5</sub> and Sm<sub>2</sub>Co<sub>17</sub> alloys

Since the beginning of rare earth magnet production in the early 1970's, Recoma<sup>®</sup> has been a synonym for high quality SmCo materials. The combination of excellent magnetic properties with superior temperature and corrosion stability has made these materials the standard for applications in demanding environments.

Offering the best magnetic properties at elevated temperatures, SmCo magnets are widely used in the chemical and aerospace industries, as well as in many automotive "under the hood" applications. Owing to their superior corrosion stability, SmCo magnets can in most cases be used without protective coating. And since they show little or no surface degradation during machining, SmCo are the ideal materials for rare earth micromagnets.

There are two families of SmCo materials. The  $Sm_2Co_{17}$  magnets show the highest magnetic performance at elevated temperatures. Magnets based on  $SmCo_5$  offer easy magnetizing in moderate fields and the best corrosion resistance of all rare earth magnets.

The most common Recoma materials are presented in detail on the following pages. In addition to these main grades, materials with rather unique properties are available: Materials where the temperature coefficient of magnetization can be adjusted to a preferred value (including zero), or materials for highest operating temperatures up to 500°C and beyond. These materials are usually customized to the requirements of the individual customer. Please contact us for a solution to your application needs.



|             |                           |     |                 | Su   | mma  | ry of | mair | n gra | des  | of Sr | nCo <sub>5</sub> | and S | Sm₂Co | 0 <sub>17</sub> |                   |          |     | ty                | Magnetizing<br>Field <sup>(2)</sup> | Temperature<br>Coefficient<br>of Br (20-150°C) | Maximum<br>Operating<br>Temperature <sup>(3)</sup> |
|-------------|---------------------------|-----|-----------------|------|------|-------|------|-------|------|-------|------------------|-------|-------|-----------------|-------------------|----------|-----|-------------------|-------------------------------------|------------------------------------------------|----------------------------------------------------|
|             |                           |     | (BH             | )max |      |       | В    | r     |      |       | Н                | cb    |       | In              | trinsic Co<br>Hcj | ercivity | ý   | Density           | Magneti<br>Field <sup>(2)</sup>     | Temperatu<br>Coefficient<br>of Br (20-1:       | Maximum<br>Operating<br>Temperat                   |
|             |                           | kJ/ | /m <sup>3</sup> | MG   | Oe   |       | Γ    | k     | G    | k/    | Vm               | k     | De    | kA              | Vm                | k        | Эe  | g/cm <sup>3</sup> | kA/m                                | %/K                                            | °C                                                 |
| Product     | Designator <sup>(1)</sup> | typ | min             | typ  | min  | typ   | min  | typ   | min  | typ   | min              | typ   | min   | typ             | min               | typ      | min | typ               | min                                 | typ                                            |                                                    |
| Recoma 18   | (135/200) A               | 143 | 135             | 18.0 | 17.0 | 0.87  | 0.83 | 8.7   | 8.3  | 650   | 600              | 8.2   | 7.5   | 2400            | 2000              | 30       | 25  | 8.4               | >2000                               | -0.045                                         | 250                                                |
| Recoma 20   | (140/200) A               | 160 | 140             | 20.1 | 17.6 | 0.90  | 0.85 | 9.0   | 8.5  | 700   | 640              | 8.8   | 8.0   | 2400            | 2000              | 30       | 25  | 8.4               | >2000                               | -0.045                                         | 250                                                |
| Recoma 22   | (155/200) T               | 175 | 155             | 22.0 | 19.5 | 0.94  | 0.90 | 9.4   | 9.0  | 730   | 680              | 9.2   | 8.6   | 2400            | 2000              | 30       | 25  | 8.4               | >2000                               | -0.045                                         | 250                                                |
| Recoma 25   | (180/200) T               | 200 | 180             | 25.1 | 22.6 | 1.00  | 0.97 | 10.0  | 9.7  | 775   | 720              | 9.7   | 9.1   | 2400            | 2000              | 30       | 25  | 8.4               | >2000                               | -0.050                                         | 250                                                |
| Recoma 24HE | (175/150) A               | 195 | 175             | 24.5 | 22.0 | 1.02  | 0.97 | 10.2  | 9.7  | 765   | 715              | 9.6   | 9.0   | 2000            | 1500              | 25       | 19  | 8.4               | >4000                               | -0.035                                         | 350                                                |
| Recoma 26   | (185/120) A               | 205 | 185             | 25.8 | 23.2 | 1.04  | 1.00 | 10.4  | 10.0 | 765   | 680              | 9.6   | 8.6   | 2000            | 1200              | 25       | 15  | 8.3               | >4000                               | -0.035                                         | 350                                                |
| Recoma 26HE | (195/150) T               | 215 | 195             | 27.0 | 24.5 | 1.07  | 1.03 | 10.7  | 10.3 | 800   | 755              | 10.1  | 9.5   | 2000            | 1500              | 25       | 19  | 8.4               | >4000                               | -0.035                                         | 350                                                |
| Recoma 28   | (195/120) T               | 225 | 195             | 28.3 | 24.5 | 1.10  | 1.04 | 11.0  | 10.4 | 800   | 700              | 10.1  | 8.8   | 2000            | 1200              | 25       | 15  | 8.3               | >4000                               | -0.035                                         | 350                                                |
| Recoma 28HE | (215/150) T               | 225 | 215             | 28.3 | 27.0 | 1.10  | 1.06 | 11.0  | 10.6 | 805   | 775              | 10.1  | 9.7   | 2000            | 1500              | 25       | 19  | 8.4               | >4000                               | -0.035                                         | 350                                                |
| Recoma 30   | (215/104) T               | 230 | 215             | 28.9 | 27.0 | 1.12  | 1.09 | 11.2  | 10.9 | 820   | 700              | 10.3  | 8.8   | 1600            | 1040              | 20       | 13  | 8.3               | >4000                               | -0.035                                         | 250                                                |
| Recoma 30HE | (215/150) T               | 230 | 215             | 28.9 | 27.0 | 1.12  | 1.09 | 11.2  | 10.9 | 830   | 795              | 10.4  | 10.0  | 2000            | 1500              | 25       | 19  | 8.3               | >4000                               | -0.035                                         | 350                                                |
| Recoma 30S  | (225/175) T               | 235 | 225             | 29.5 | 28.3 | 1.12  | 1.09 | 11.2  | 10.9 | 845   | 820              | 10.6  | 10.3  | 2150            | 1750              | 27       | 22  | 8.3               | >4000                               | -0.035                                         | 350                                                |
| Recoma 32   | (225/104) T               | 240 | 225             | 30.2 | 28.3 | 1.15  | 1.12 | 11.5  | 11.2 | 835   | 640              | 10.5  | 8.0   | 1350            | 1040              | 17       | 13  | 8.3               | >4000                               | -0.035                                         | 250                                                |
| Recoma 32S  | (223/159) T               | 245 | 223             | 30.8 | 28.0 | 1.15  | 1.12 | 11.5  | 11.2 | 850   | 780              | 10.7  | 9.8   | 1790            | 1590              | 22.5     | 20  | 8.3               | >4000                               | -0.035                                         | 250                                                |
| Recoma 33E  | (238/175) T               | 251 | 238             | 31.5 | 29.9 | 1.16  | 1.14 | 11.6  | 11.4 | 865   | 845              | 10.9  | 10.6  | 2100            | 1750              | 26.4     | 22  | 8.3               | >4000                               | -0.035                                         | 350                                                |
| Recoma 35E  | (255/171) T               | 265 | 255             | 33.3 | 32.0 | 1.19  | 1.17 | 11.9  | 11.7 | 880   | 860              | 11.1  | 10.8  | 1800            | 1710              | 23       | 21  | 8.3               | >4000                               | -0.035                                         | 300                                                |

### RECOMA<sup>®</sup> mary of main grades of SmCo₅ and Sm<sub>2</sub>C

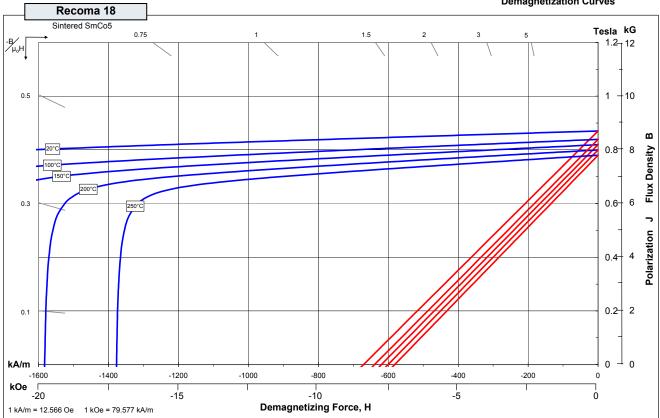
1) A = Axial; T = Transverse or Isostatic

2) Magnetizing Field - Values are dependent on size, shape and characteristics of the magnetizing pulse

3) Maximum Operating Temperature - In the presence of strong demagnetizing fields or if the magnets operate on a low loadline, the maximum temperature may be considerably lower.

**High Temperature** and **Temperature Stabilized** grades are also available. Please consult your Arnold representative to learn more about these products.




### **Recoma® Sintered Samarium Cobalt Magnets**

These are also referred to as Rare Earth or SmCo magnets. The Recoma family of materials offer a combination of high magnetic output and excellent temperature stability. Please contact Arnold for additional grade information, application assistance and recommendations for protective coatings. Assemblies using these magnets can also be provided.

|                     | Characteristic                               | Units             | min.   | nominal |
|---------------------|----------------------------------------------|-------------------|--------|---------|
| Magnetic Properties | Pro                                          | Gauss             | 8,300  | 8,700   |
|                     | Br, Residual Induction                       | Tesla             | 0.83   | 0.87    |
|                     |                                              | Oersteds          | 7,540  | 8,170   |
| Prop                | H <sub>cB</sub> , Coercivity                 | kA/m              | 600    | 650     |
| atic                | u                                            | Oersteds          | 25,000 | 30,000  |
| igne                | <b>H<sub>cJ</sub></b> , Intrinsic Coercivity | kA/m              | 2,000  | 2,400   |
| Ма                  | Plimax                                       | MGOe              | 17     | 18      |
|                     | BHmax, Maximum Energy Product                | kJ/m <sup>3</sup> | 135    | 143     |

|                     | Characteristic                                  | Units                        | С //      | C⊥  |
|---------------------|-------------------------------------------------|------------------------------|-----------|-----|
|                     | Reversible Temperature Coefficients (1)         |                              |           |     |
| sə                  | of Induction, α(Br)                             | %/°C                         | -0.0      | )45 |
| erti                | of Coercivity, a(Hcj)                           | %/°C                         | -0.       | 19  |
| Thermal Properties  | Coefficient of Thermal Expansion <sup>(2)</sup> | ΔL/L per °Cx10 <sup>-6</sup> | 7         | 14  |
| al F                | Thermal Conductivity                            | W/(m•K)                      | 1         | 1   |
| nern                | Specific Heat (3)                               | J/(kg•K)                     | 370       |     |
| È                   | Max. Recommended Use Temperature                | °C                           | 250       |     |
|                     | Curie Temperature, Tc                           | °C                           | 72        | 25  |
|                     | Flowing Strongth                                | psi                          | psi 17,40 |     |
|                     | Flexural Strength                               | MPa                          | 120       |     |
| Ś                   | Compressive Strength                            | psi                          | 145,000   |     |
| Other<br>Properties | Compressive Strength                            | MPa                          | 1000      |     |
| te de               | Young's Modulus                                 | GPa                          | 140       |     |
| ā                   | Density                                         | g/cm <sup>3</sup>            | 8.4       |     |
|                     | Hardness, Vickers                               | Hv                           | 600       |     |
|                     | Electrical Resistivity, p                       | μΩ • cm                      | 5         | 5   |
| Notes:              | (1) Coefficients measured between 20 and        | 150 °C                       |           |     |

(2) Between 20 and 200 °C (3) Between 20 and 150 °C



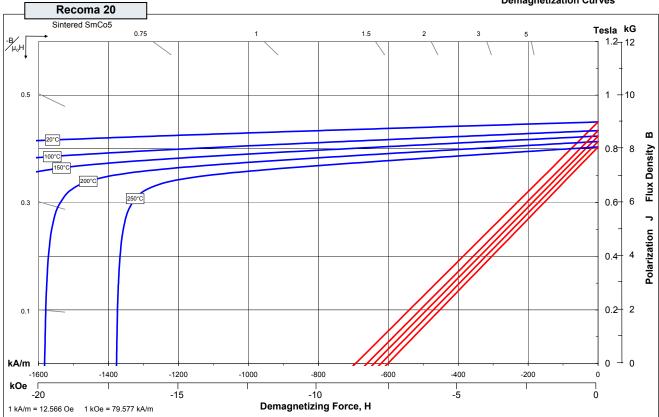
#### **Demagnetization Curves**

Notes The material data and demagnetization curves shown above represent typical properties that may vary due to product shape and size. Demagnetization curves show nominal Br and Hcj.

Magnets can be supplied thermally stabilized or magnetically calibrated to customer specifications.

Additional grades are available. Please contact the factory for information.




#### **Recoma® Sintered Samarium Cobalt Magnets**

These are also referred to as Rare Earth or SmCo magnets. The Recoma family of materials offer a combination of high magnetic output and excellent temperature stability. Please contact Arnold for additional grade information, application assistance and recommendations for protective coatings. Assemblies using these magnets can also be provided.

|                     | Characteristic                         | Units             | min.   | nominal |
|---------------------|----------------------------------------|-------------------|--------|---------|
| Magnetic Properties |                                        | Gauss             | 8,500  | 9,000   |
|                     | Br, Residual Induction                 | Tesla             | 0.85   | 0.90    |
|                     |                                        | Oersteds          | 8,040  | 8,800   |
| Prop                | H <sub>cB</sub> , Coercivity           | kA/m              | 640    | 700     |
| otic                | u                                      | Oersteds          | 25,000 | 30,000  |
| igne                | H <sub>cJ</sub> , Intrinsic Coercivity | kA/m              | 2,000  | 2,400   |
| Ма                  | PHmax                                  | MGOe              | 18     | 20      |
|                     | BHmax, Maximum Energy Product          | kJ/m <sup>3</sup> | 140    | 160     |

|                     | Characteristic                                  | Units                        | С //    | C⊥  |  |
|---------------------|-------------------------------------------------|------------------------------|---------|-----|--|
|                     | Reversible Temperature Coefficients (1)         |                              |         |     |  |
| sa                  | of Induction, α(Br)                             | %/°C                         | -0.045  |     |  |
| Thermal Properties  | of Coercivity, α(Hcj)                           | %/°C                         | -0.19   |     |  |
|                     | Coefficient of Thermal Expansion <sup>(2)</sup> | ΔL/L per °Cx10 <sup>-6</sup> | 7       | 14  |  |
| alF                 | Thermal Conductivity                            | W/(m•K)                      | 1       | 1   |  |
| lern                | Specific Heat <sup>(3)</sup>                    | J/(kg•K)                     | 370     |     |  |
| È                   | Max. Recommended Use Temperature                | °C                           | 250     |     |  |
|                     | Curie Temperature, Tc                           | °C                           | 72      | 25  |  |
|                     | Flowwood Strongth                               | psi                          | 17,4    | 400 |  |
|                     | Flexural Strength                               | MPa                          | 120     |     |  |
| Ś                   | Compressive Strength                            | psi                          | 145,000 |     |  |
| Other<br>Properties | Compressive Strength                            | MPa                          | 1000    |     |  |
| Other               | Young's Modulus                                 | GPa                          | 14      | 10  |  |
| ā                   | Density                                         | g/cm <sup>3</sup>            | 8.      | 4   |  |
|                     | Hardness, Vickers                               | Hv                           | 600     |     |  |
|                     | Electrical Resistivity, p                       | μΩ • cm                      | 5       | 5   |  |
| Notes:              | (1) Coefficients measured between 20 and        | 150 °C                       |         |     |  |

(1) Coefficients measured between 20 and 150 °C (2) Between 20 and 200 °C (3) Between 20 and 150 °C



#### **Demagnetization Curves**

Notes The material data and demagnetization curves shown above represent typical properties that may vary due to product shape and size. Demagnetization curves show nominal Br and Hcj.

Magnets can be supplied thermally stabilized or magnetically calibrated to customer specifications.

Additional grades are available. Please contact the factory for information.



### **Recoma® Sintered Samarium Cobalt Magnets**

These are also referred to as Rare Earth or SmCo magnets. The Recoma family of materials offer a combination of high magnetic output and excellent temperature stability. Please contact Arnold for additional grade information, application assistance and recommendations for protective coatings. Assemblies using these magnets can also be provided.

|                     | Characteristic                         | Units             | min.   | nominal |
|---------------------|----------------------------------------|-------------------|--------|---------|
| Magnetic Properties |                                        | Gauss             | 9,000  | 9,400   |
|                     | Br, Residual Induction                 | Tesla             | 0.90   | 0.94    |
|                     |                                        | Oersteds          | 8,550  | 9,170   |
| Prop                | H <sub>cB</sub> , Coercivity           | kA/m              | 680    | 730     |
| otic                | u                                      | Oersteds          | 25,000 | 30,000  |
| igne                | H <sub>cJ</sub> , Intrinsic Coercivity | kA/m              | 2,000  | 2,400   |
| Ма                  | PHmax                                  | MGOe              | 20     | 22      |
|                     | BHmax, Maximum Energy Product          | kJ/m <sup>3</sup> | 155    | 175     |

| _                   |                                                 |                              |         |     |
|---------------------|-------------------------------------------------|------------------------------|---------|-----|
|                     | Characteristic                                  | Units                        | С //    | C⊥  |
|                     | Reversible Temperature Coefficients (1)         |                              |         |     |
| Se                  | of Induction, α(Br)                             | %/°C                         | -0.0    | )45 |
| Thermal Properties  | of Coercivity, α(Hcj)                           | %/°C                         | -0.     | 25  |
|                     | Coefficient of Thermal Expansion <sup>(2)</sup> | ΔL/L per °Cx10 <sup>-6</sup> | 7       | 14  |
|                     | Thermal Conductivity                            | W/(m•K)                      | 1       | 1   |
| nern                | Specific Heat (3)                               | J/(kg•K)                     | 370     |     |
| Ę                   | Max. Recommended Use Temperature                | °C                           | 250     |     |
|                     | Curie Temperature, Tc                           | °C                           | 72      | 25  |
|                     | Eleveral Strength                               | psi 17,4                     |         | 400 |
|                     | Flexural Strength                               | MPa                          | 120     |     |
| ş                   | Compressive Strength                            | psi                          | 145,000 |     |
| Other<br>opertie    | Compressive Strength                            | MPa                          | 1000    |     |
| Other<br>Properties | Young's Modulus                                 | GPa                          | 140     |     |
| ā                   | Density                                         | g/cm <sup>3</sup>            | 8.4     |     |
|                     | Hardness, Vickers                               | Hv                           | 600     |     |
|                     | Electrical Resistivity, ρ                       | μΩ • cm                      | 5       | 5   |
| Notes:              | (1) Coefficients measured between 20 and        | 150 °C                       |         |     |

(1) Coefficients measured between 20 and 150 °C (2) Between 20 and 200 °C (3) Between 20 and 150 °C

#### Recoma 22 Sintered SmCo5 Tesla kG 0.75 1.5 2 3 5 -₿∕ µ₀H 1.2<sub>T</sub> 12 10 0.5 1 20°C ۵ 100°C Flux Density 0.8 8 50°C 200°C 250°C 0.6 6 0.3 7 Polarization 0.4 4 0.2 2 0.1 kA/m 0 0 -1600 -1400 -1200 -1000 -800 -600 -400 -200 0 kOe -5 -15 -20 -10 0 Demagnetizing Force, H 1 kA/m = 12.566 Oe 1 kOe = 79.577 kA/m

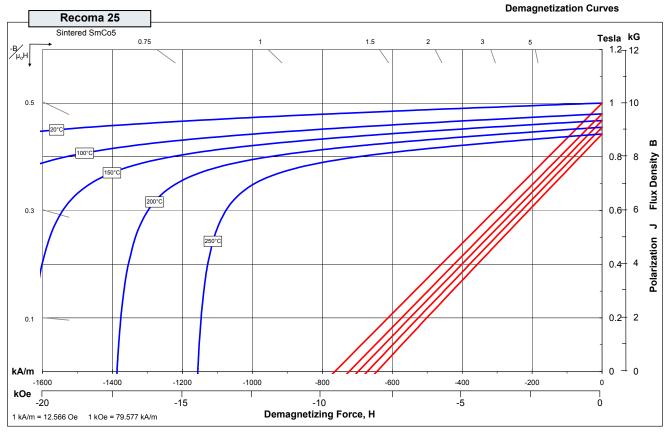
#### **Demagnetization Curves**

Notes The material data and demagnetization curves shown above represent typical properties that may vary due to product shape and size. Demagnetization curves show nominal Br and Hcj.

Magnets can be supplied thermally stabilized or magnetically calibrated to customer specifications.

Additional grades are available. Please contact the factory for information.




### **Recoma® Sintered Samarium Cobalt Magnets**

These are also referred to as Rare Earth or SmCo magnets. The Recoma family of materials offer a combination of high magnetic output and excellent temperature stability. Please contact Arnold for additional grade information, application assistance and recommendations for protective coatings. Assemblies using these magnets can also be provided.

|                     | Characteristic                         | Units             | min.   | nominal |
|---------------------|----------------------------------------|-------------------|--------|---------|
| Magnetic Properties |                                        | Gauss             | 9,700  | 10,000  |
|                     | Br, Residual Induction                 | Tesla             | 0.97   | 1.00    |
|                     |                                        | Oersteds          | 9,050  | 9,740   |
| Prot                | H <sub>cB</sub> , Coercivity           | kA/m              | 720    | 775     |
| otic                | u                                      | Oersteds          | 25,000 | 30,000  |
| igne                | H <sub>cJ</sub> , Intrinsic Coercivity | kA/m              | 2,000  | 2,400   |
| Ма                  | PHmax                                  | MGOe              | 23     | 25      |
|                     | BHmax, Maximum Energy Product          | kJ/m <sup>3</sup> | 180    | 200     |

|                     | Characteristic                                  | Units                        | C // | C⊥  |
|---------------------|-------------------------------------------------|------------------------------|------|-----|
|                     | Reversible Temperature Coefficients (1)         |                              |      |     |
| sə                  | of Induction, α(Br)                             | %/°C                         | -0.  | 05  |
| erti                | of Coercivity, a(Hcj)                           | %/°C                         | -0.  | 24  |
| Thermal Properties  | Coefficient of Thermal Expansion <sup>(2)</sup> | ΔL/L per °Cx10 <sup>-6</sup> | 7    | 15  |
| alF                 | Thermal Conductivity                            | W/(m•K)                      | 1    | 1   |
| nerm                | Specific Heat (3)                               | J/(kg•K)                     | 370  |     |
| ⊨                   | Max. Recommended Use Temperature                | °C                           | 250  |     |
|                     | Curie Temperature, Tc                           | °C                           | 72   | 25  |
|                     | Eleveral Strength                               | psi                          | 17,4 | 400 |
|                     | Flexural Strength                               | MPa                          | 12   | 20  |
| ý                   | Compressive Strength                            | psi                          | 145, | 000 |
| Other<br>opertie    | Compressive Strength                            | MPa                          | 10   | 00  |
| Other<br>Properties | Young's Modulus                                 | GPa                          | 140  |     |
| ā                   | Density                                         | g/cm <sup>3</sup>            | 8.4  |     |
|                     | Hardness, Vickers                               | Hv                           | 560  |     |
|                     | Electrical Resistivity, ρ                       | μΩ • cm                      | 5    | 5   |
| Notes:              | (1) Coefficients measured between 20 and        | 150 °C                       |      |     |

(1) Coefficients measured between 20 and 150 °C (2) Between 20 and 200 °C (3) Between 20 and 150 °C



Notes The material data and demagnetization curves shown above represent typical properties that may vary due to product shape and size. Demagnetization curves show nominal Br and Hcj.

Magnets can be supplied thermally stabilized or magnetically calibrated to customer specifications.

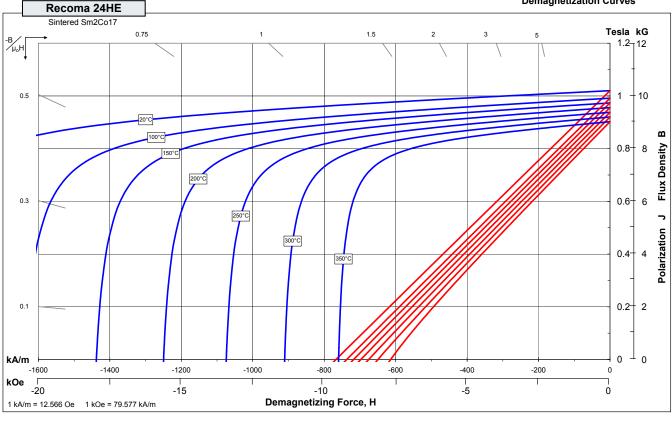
Additional grades are available. Please contact the factory for information.



### Recoma 24HE

#### **Recoma® Sintered Samarium Cobalt Magnets**

These are also referred to as Rare Earth or SmCo magnets. The Recoma family of materials offer a combination of high magnetic output and excellent temperature stability. Please contact Arnold for additional grade information, application assistance and recommendations for protective coatings. Assemblies using these magnets can also be provided.


|                     | Characteristic                         | Units             | min.   | nominal |
|---------------------|----------------------------------------|-------------------|--------|---------|
| Magnetic Properties | Br, Residual Induction                 | Gauss             | 9,700  | 10,200  |
|                     | DI, Residual Induction                 | Tesla             | 0.97   | 1.02    |
|                     |                                        | Oersteds          | 8,980  | 9,610   |
| Prop                | H <sub>cB</sub> , Coercivity           | kA/m              | 715    | 765     |
| tic                 | H                                      | Oersteds          | 19,000 | 25,000  |
| gne                 | H <sub>cJ</sub> , Intrinsic Coercivity | kA/m              | 1,500  | 2,000   |
| Ма                  | PHmax                                  | MGOe              | 22     | 25      |
|                     | BHmax, Maximum Energy Product          | kJ/m <sup>3</sup> | 175    | 195     |

|                     | Characteristic                           | Units                        | C //   | C⊥  |
|---------------------|------------------------------------------|------------------------------|--------|-----|
|                     | Reversible Temperature Coefficients (1)  |                              |        |     |
| se                  | of Induction, α(Br)                      | %/°C                         | -0.035 |     |
| erti                | of Coercivity, α(Hcj)                    | %/°C                         | -0.2   | 212 |
| Thermal Properties  | Coefficient of Thermal Expansion (2)     | ΔL/L per °Cx10 <sup>-6</sup> | 11     | 13  |
| alF                 | Thermal Conductivity                     | W/(m•K)                      | 1      | 0   |
| erm                 | Specific Heat <sup>(3)</sup>             | J/(kg•K)                     | 35     | 50  |
| Ę                   | Max. Recommended Use Temperature         | °C                           | 35     | 50  |
|                     | Curie Temperature, Tc                    | °C                           | 82     | 25  |
|                     | Flexural Strength                        | psi                          | 17,4   | 400 |
|                     |                                          | MPa                          | 12     | 20  |
| ý                   | Compressive Strength                     | psi                          | 116,   | 000 |
| Other<br>opertie    | Compressive Strength                     | MPa                          | 80     | 00  |
| Other<br>Properties | Young's Modulus                          | GPa                          | 14     | 10  |
| ā                   | Density                                  | g/cm <sup>3</sup>            | 8.     | 4   |
|                     | Hardness, Vickers                        | Hv                           | 60     | 00  |
|                     | Electrical Resistivity, p                | μΩ • cm                      | 9      | 0   |
| Notes:              | (1) Coefficients measured between 20 and | 150 °C                       |        |     |

(2) Between 20 and 200 °C

(3) Between 20 and 150 °C

#### **Demagnetization Curves**



Notes The material data and demagnetization curves shown above represent typical properties that may vary due to product shape and size. Demagnetization curves show nominal Br and Hcj.

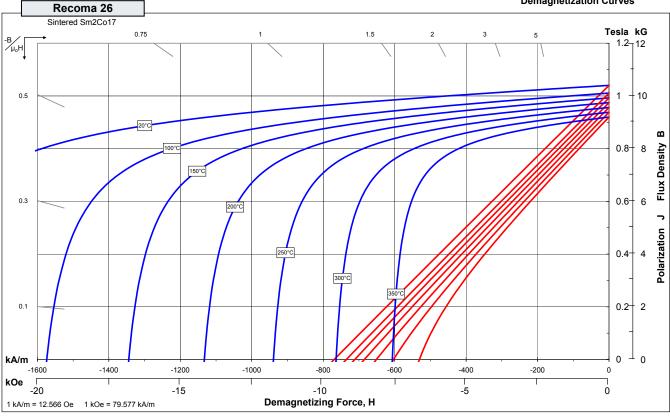
Magnets can be supplied thermally stabilized or magnetically calibrated to customer specifications.

Additional grades are available. Please contact the factory for information.



#### **Recoma® Sintered Samarium Cobalt Magnets**

These are also referred to as Rare Earth or SmCo magnets. The Recoma family of materials offer a combination of high magnetic output and excellent temperature stability. Please contact Arnold for additional grade information, application assistance and recommendations for protective coatings. Assemblies using these magnets can also be provided.


|                     | Characteristic                         | Units             | min.   | nominal |
|---------------------|----------------------------------------|-------------------|--------|---------|
|                     | Br, Residual Induction                 | Gauss             | 10,000 | 10,400  |
| Magnetic Properties | DI, Residual Induction                 | Tesla             | 1.00   | 1.04    |
|                     | H <sub>cB</sub> , Coercivity           | Oersteds          | 8,550  | 9,610   |
| Prot                | T <sub>C</sub> B, Coercivity           | kA/m              | 680    | 765     |
| tic                 | <b>н</b>                               | Oersteds          | 15,000 | 25,000  |
| gne                 | H <sub>cJ</sub> , Intrinsic Coercivity | kA/m              | 1,200  | 2,000   |
| Ма                  | PHmox                                  | MGOe              | 23     | 26      |
|                     | BHmax, Maximum Energy Product          | kJ/m <sup>3</sup> | 185    | 205     |

|                     | Characteristic                           | Units                        | C //    | C⊥  |
|---------------------|------------------------------------------|------------------------------|---------|-----|
| Thermal Properties  | Reversible Temperature Coefficients (1)  |                              |         |     |
|                     | of Induction, α(Br)                      | %/°C                         | -0.0    | 035 |
|                     | of Coercivity, a(Hcj)                    | %/°C                         | -0.2    | 247 |
|                     | Coefficient of Thermal Expansion (2)     | ΔL/L per °Cx10 <sup>-6</sup> | 11      | 13  |
|                     | Thermal Conductivity                     | W/(m•K)                      | 1       | 0   |
|                     | Specific Heat <sup>(3)</sup>             | J/(kg•K)                     | 350     |     |
|                     | Max. Recommended Use Temperature         | °C                           | 350     |     |
|                     | Curie Temperature, Tc                    | °C                           | 82      | 25  |
|                     | Flexural Strength                        | psi                          | 17,400  |     |
|                     |                                          | MPa                          | 120     |     |
| ş                   | Compressive Strength                     | psi                          | 116,000 |     |
| Other<br>opertie    |                                          | MPa                          | 80      | 00  |
| Other<br>Properties | Young's Modulus                          | GPa                          | 14      | 10  |
| ā                   | Density                                  | g/cm <sup>3</sup>            | 8.3     |     |
|                     | Hardness, Vickers                        | Hv                           | 600     |     |
|                     | Electrical Resistivity, p                | μΩ • cm                      | 9       | 0   |
| Notes:              | (1) Coefficients measured between 20 and | 150 °C                       |         |     |

(2) Between 20 and 200 °C

(3) Between 20 and 150 °C

#### **Demagnetization Curves**



Notes The material data and demagnetization curves shown above represent typical properties that may vary due to product shape and size. Demagnetization curves show nominal Br and Hcj.

Magnets can be supplied thermally stabilized or magnetically calibrated to customer specifications.

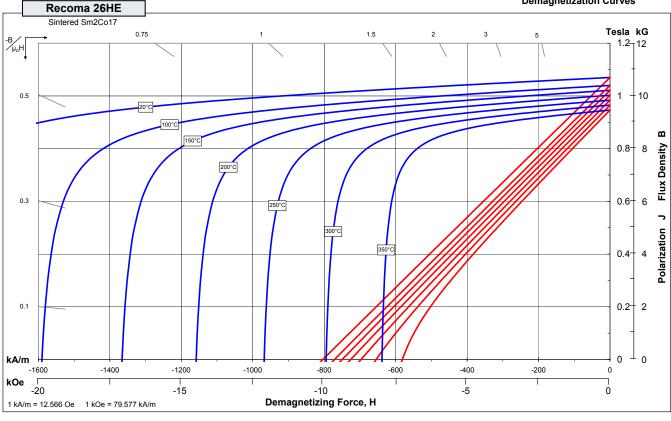
Additional grades are available. Please contact the factory for information.



### Recoma 26HE

#### **Recoma® Sintered Samarium Cobalt Magnets**

These are also referred to as Rare Earth or SmCo magnets. The Recoma family of materials offer a combination of high magnetic output and excellent temperature stability. Please contact Arnold for additional grade information, application assistance and recommendations for protective coatings. Assemblies using these magnets can also be provided.


|                     | Characteristic                               | Units             | min.   | nominal                         |
|---------------------|----------------------------------------------|-------------------|--------|---------------------------------|
| Magnetic Properties | Br, Residual Induction                       | Gauss             | 10,300 | 10,700                          |
|                     | DI, Residual Induction                       | Tesla             | 1.03   | 1.07                            |
|                     | H <sub>cB</sub> , Coercivity                 |                   | 10,050 |                                 |
| Prot                | T <sub>C</sub> B, Coercivity                 | kA/m              | 755    | 800                             |
| tic                 |                                              |                   | 25,000 |                                 |
| gne                 | <b>H<sub>cJ</sub></b> , Intrinsic Coercivity | kA/m              | 1,500  | 10,700<br>1.07<br>10,050<br>800 |
| Ма                  | PHmax                                        | MGOe              | 25     | 27                              |
|                     | BHmax, Maximum Energy Product                | kJ/m <sup>3</sup> | 195    | 215                             |

|                     | Characteristic                           | Units                        | C //    | С⊥  |
|---------------------|------------------------------------------|------------------------------|---------|-----|
| Thermal Properties  | Reversible Temperature Coefficients (1)  |                              |         |     |
|                     | of Induction, α(Br)                      | %/°C                         | -0.0    | )35 |
|                     | of Coercivity, α(Hcj)                    | %/°C                         | -0.     | 24  |
|                     | Coefficient of Thermal Expansion (2)     | ΔL/L per °Cx10 <sup>-6</sup> | 11      | 13  |
|                     | Thermal Conductivity                     | W/(m•K)                      | 1       | 0   |
| erm                 | Specific Heat <sup>(3)</sup>             | J/(kg•K)                     | 350     |     |
| Ę                   | Max. Recommended Use Temperature         | °C                           | 350     |     |
|                     | Curie Temperature, Tc                    | °C                           | 82      | 25  |
|                     | Flexural Strength                        | psi                          | 17,400  |     |
|                     |                                          | MPa                          | 120     |     |
| ŝ                   | Compressive Strength                     | psi                          | 116,000 |     |
| Other<br>opertie    | Compressive Strength                     | MPa                          | 800     |     |
| Other<br>Properties | Young's Modulus                          | GPa                          | 14      | 10  |
| ā                   | Density                                  | g/cm <sup>3</sup>            | 8.4     |     |
|                     | Hardness, Vickers                        | Hv                           | 600     |     |
|                     | Electrical Resistivity, p                | μΩ • cm                      | 9       | 0   |
| Notes:              | (1) Coefficients measured between 20 and | 150 °C                       |         |     |

(2) Between 20 and 200 °C

(3) Between 20 and 150 °C

#### **Demagnetization Curves**



Notes The material data and demagnetization curves shown above represent typical properties that may vary due to product shape and size. Demagnetization curves show nominal Br and Hcj.

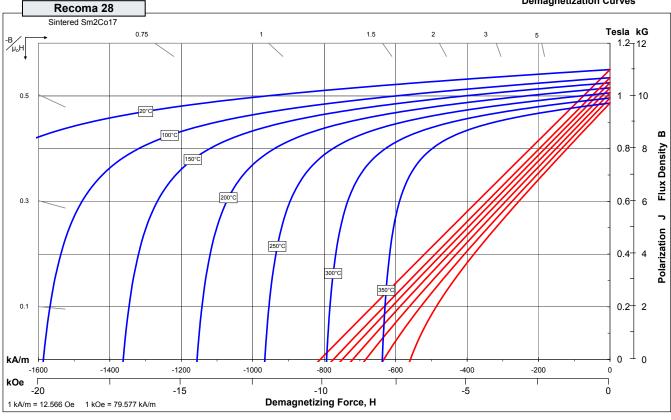
Magnets can be supplied thermally stabilized or magnetically calibrated to customer specifications.

Additional grades are available. Please contact the factory for information.



#### **Recoma® Sintered Samarium Cobalt Magnets**

These are also referred to as Rare Earth or SmCo magnets. The Recoma family of materials offer a combination of high magnetic output and excellent temperature stability. Please contact Arnold for additional grade information, application assistance and recommendations for protective coatings. Assemblies using these magnets can also be provided.


|                     | Characteristic                         | Units               | min.   | nominal        |
|---------------------|----------------------------------------|---------------------|--------|----------------|
| Magnetic Properties | Br, Residual Induction                 | Gauss               | 10,400 | 11,000         |
|                     | DI, Residual Induction                 | Tesla               | 1.04   | 1.10           |
|                     | H <sub>cB</sub> , Coercivity           | Oersteds 8,800 10,0 | 10,050 |                |
| Pro F               | T <sub>C</sub> B, Coercivity           | kA/m                | 700    | 11,000<br>1.10 |
| tic                 | H <sub>cJ</sub> , Intrinsic Coercivity |                     | 25,000 |                |
| gne                 | COERCIVITY                             | kA/m                | 1,200  | 2,000          |
| Ма                  | PHmax                                  | MGOe                | 25     | 28             |
|                     | BHmax, Maximum Energy Product          | kJ/m <sup>3</sup>   | 195    | 225            |

|                     | Characteristic                           | Units                        | C //    | C⊥  |
|---------------------|------------------------------------------|------------------------------|---------|-----|
| Thermal Properties  | Reversible Temperature Coefficients (1)  |                              |         |     |
|                     | of Induction, α(Br)                      | %/°C                         | -0.0    | 035 |
|                     | of Coercivity, a(Hcj)                    | %/°C                         | -0.     | 24  |
|                     | Coefficient of Thermal Expansion (2)     | ΔL/L per °Cx10 <sup>-6</sup> | 11      | 13  |
|                     | Thermal Conductivity                     | W/(m•K)                      | 1       | 0   |
|                     | Specific Heat <sup>(3)</sup>             | J/(kg•K)                     | 350     |     |
|                     | Max. Recommended Use Temperature         | °C                           | 350     |     |
|                     | Curie Temperature, Tc                    | °C                           | 82      | 25  |
|                     | Flexural Strength                        | psi                          | 17,400  |     |
|                     |                                          | MPa                          | 120     |     |
| ş                   | Compressive Strength                     | psi                          | 116,000 |     |
| Other<br>opertie    |                                          | MPa                          | 80      | 00  |
| Other<br>Properties | Young's Modulus                          | GPa                          | 14      | 10  |
| ā                   | Density                                  | g/cm <sup>3</sup>            | 8.3     |     |
|                     | Hardness, Vickers                        | Hv                           | 600     |     |
|                     | Electrical Resistivity, p                | μΩ • cm                      | 9       | 0   |
| Notes:              | (1) Coefficients measured between 20 and | 150 °C                       |         |     |

(2) Between 20 and 200 °C

(3) Between 20 and 150 °C

#### **Demagnetization Curves**



Notes The material data and demagnetization curves shown above represent typical properties that may vary due to product shape and size. Demagnetization curves show nominal Br and Hcj.

Magnets can be supplied thermally stabilized or magnetically calibrated to customer specifications.

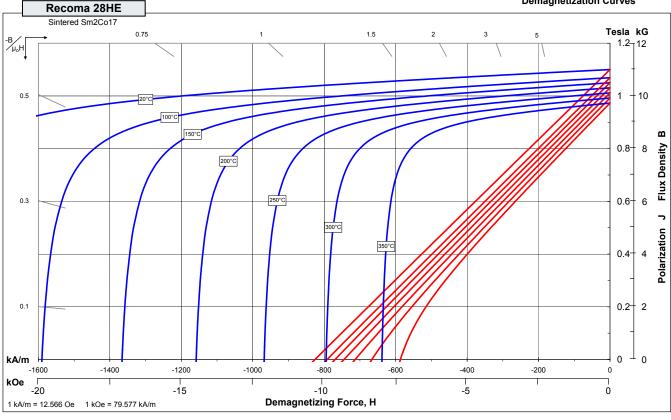
Additional grades are available. Please contact the factory for information.



### Recoma 28HE

#### **Recoma® Sintered Samarium Cobalt Magnets**

These are also referred to as Rare Earth or SmCo magnets. The Recoma family of materials offer a combination of high magnetic output and excellent temperature stability. Please contact Arnold for additional grade information, application assistance and recommendations for protective coatings. Assemblies using these magnets can also be provided.


|                     | Characteristic                         | Units             | min.   | nominal |
|---------------------|----------------------------------------|-------------------|--------|---------|
| Magnetic Properties | Br, Residual Induction                 | Gauss             | 10,600 | 11,000  |
|                     | DI, Residual Induction                 | Tesla             | 1.06   | 1.10    |
|                     | H <sub>cB</sub> , Coercivity           |                   | 10,120 |         |
| Prop                | T <sub>C</sub> B, Coercivity           | kA/m              | 775    | 805     |
| tic                 |                                        | kA/m 775 805      | 25,000 |         |
| gne                 | H <sub>cJ</sub> , Intrinsic Coercivity | kA/m              | 1,500  |         |
| Ма                  | PHmax                                  | MGOe              | 27     | 28      |
|                     | BHmax, Maximum Energy Product          | kJ/m <sup>3</sup> | 215    | 225     |

|                     | Characteristic                           | Units                        | C //    | ст  |
|---------------------|------------------------------------------|------------------------------|---------|-----|
| Thermal Properties  | Reversible Temperature Coefficients (1)  |                              |         |     |
|                     | of Induction, α(Br)                      | %/°C                         | -0.0    | )35 |
|                     | of Coercivity, α(Hcj)                    | %/°C                         | -0.     | 24  |
|                     | Coefficient of Thermal Expansion (2)     | ΔL/L per °Cx10 <sup>-6</sup> | 11      | 13  |
|                     | Thermal Conductivity                     | W/(m•K)                      | 1       | 0   |
| erm                 | Specific Heat <sup>(3)</sup>             | J/(kg•K)                     | 350     |     |
| Ę                   | Max. Recommended Use Temperature         | °C                           | 350     |     |
|                     | Curie Temperature, Tc                    | °C                           | 82      | 25  |
|                     | Flexural Strength                        | psi                          | 17,400  |     |
|                     |                                          | MPa                          | 120     |     |
| ŝ                   | Compressive Strength                     | psi                          | 116,000 |     |
| Other<br>opertie    | Compressive Strength                     | MPa                          | 800     |     |
| Other<br>Properties | Young's Modulus                          | GPa                          | 14      | 10  |
| ā                   | Density                                  | g/cm <sup>3</sup>            | 8.4     |     |
|                     | Hardness, Vickers                        | Hv                           | Hv 6    |     |
|                     | Electrical Resistivity, p                | μΩ • cm                      | 9       | 0   |
| Notes:              | (1) Coefficients measured between 20 and | 150 °C                       |         |     |

(2) Between 20 and 200 °C

(3) Between 20 and 150 °C

#### **Demagnetization Curves**



Notes The material data and demagnetization curves shown above represent typical properties that may vary due to product shape and size. Demagnetization curves show nominal Br and Hcj.

Magnets can be supplied thermally stabilized or magnetically calibrated to customer specifications.

Additional grades are available. Please contact the factory for information.



#### **Recoma® Sintered Samarium Cobalt Magnets**

These are also referred to as Rare Earth or SmCo magnets. The Recoma family of materials offer a combination of high magnetic output and excellent temperature stability. Please contact Arnold for additional grade information, application assistance and recommendations for protective coatings. Assemblies using these magnets can also be provided.

|                     | Characteristic                         | Units             | min.   | nominal        |
|---------------------|----------------------------------------|-------------------|--------|----------------|
| Magnetic Properties | <b>Br</b> Desiduel lasterias           | Gauss             | 10,900 | 11,200         |
|                     | Br, Residual Induction                 | Tesla             | 1.09   | 1.12           |
|                     |                                        |                   | 10,300 |                |
| Prop                | H <sub>cB</sub> , Coercivity           | kA/m              | 700    | 11,200<br>1.12 |
| atic                |                                        |                   | 20,000 |                |
| Magne               | H <sub>cJ</sub> , Intrinsic Coercivity | kA/m              | 1,040  | 1,600          |
|                     | PHmax                                  | MGOe              | 27     | 29             |
|                     | BHmax, Maximum Energy Product          | kJ/m <sup>3</sup> | 215    | 230            |

|                     | Characteristic                                  | Units                        | <b>C</b> // | C⊥  |
|---------------------|-------------------------------------------------|------------------------------|-------------|-----|
| Thermal Properties  | Reversible Temperature Coefficients (1)         |                              |             |     |
|                     | of Induction, α(Br)                             | %/°C                         | -0.0        | )35 |
|                     | of Coercivity, a(Hcj)                           | %/°C                         | -0.25       |     |
|                     | Coefficient of Thermal Expansion <sup>(2)</sup> | ΔL/L per °Cx10 <sup>-6</sup> | 11          | 13  |
|                     | Thermal Conductivity                            | W/(m•K)                      | 1           | 0   |
|                     | Specific Heat <sup>(3)</sup>                    | J/(kg•K)                     | 350         |     |
|                     | Max. Recommended Use Temperature                | °C                           | 250         |     |
|                     | Curie Temperature, Tc                           | °C                           | 825         |     |
|                     | Elovural Strongth                               | psi                          | 17,400      |     |
|                     | Flexural Strength                               | MPa                          | 120         |     |
| Ś                   | Compressive Strength                            | psi                          | 116         | 000 |
| Other<br>opertie    | Compressive Strength                            | MPa                          | 80          | 00  |
| Other<br>Properties | Young's Modulus                                 | GPa                          | 14          | 10  |
| 4                   | Density                                         | g/cm <sup>3</sup>            | 8.3         |     |
|                     | Hardness, Vickers                               | Hv                           | 600         |     |
|                     | Electrical Resistivity, p                       | μΩ • cm                      | 90          |     |
| Notes:              | (1) Coefficients measured between 20 and        | 150 °C                       |             |     |

(3) Between 20 and 150 °C (2) Between 20 and 200 °C

#### Recoma 30 Sintered Sm2Co17 Tesla kG 0.75 1.5 5 -₿∕ µ₀H 1.2<sub>T</sub> 12 10 0.5 1 20°C 100°C ۵ 0.8 8 Flux Density 200°C 0.6 6 0.3 7 Polarization 250°C 0.4 4 0.2 2 0.1 kA/m 0 0 -1600 -1400 -1200 -1000 -800 -400 -200 0 -600 -15 -5 -10 0 Demagnetizing Force, H 1 kA/m = 12.566 Oe 1 kOe = 79.577 kA/m

#### **Demagnetization Curves**

Notes The material data and demagnetization curves shown above represent typical properties that may vary due to product shape and size. Demagnetization curves show nominal Br and Hcj.

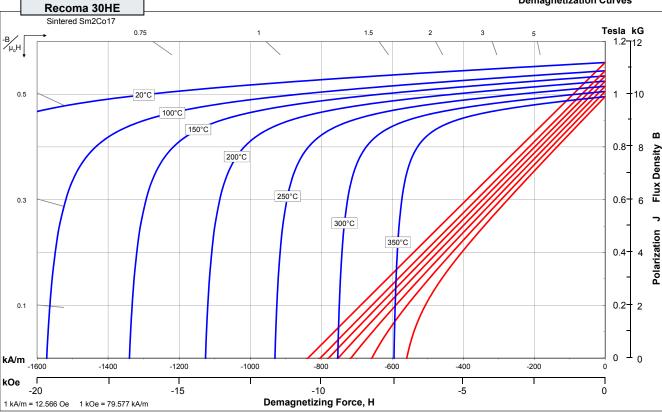
Magnets can be supplied thermally stabilized or magnetically calibrated to customer specifications.

Additional grades are available. Please contact the factory for information.



### Recoma 30HE

#### **Recoma® Sintered Samarium Cobalt Magnets**


These are also referred to as Rare Earth or SmCo magnets. The Recoma family of materials offer a combination of high magnetic output and excellent temperature stability. Please contact Arnold for additional grade information, application assistance and recommendations for protective coatings. Assemblies using these magnets can also be provided.

|                     | Characteristic                         | Units             | min.   | nominal        |
|---------------------|----------------------------------------|-------------------|--------|----------------|
| Magnetic Properties | Pro un un a                            | Gauss             | 10,900 | 11,200         |
|                     | Br, Residual Induction                 | Tesla             | 1.09   | 1.12           |
|                     |                                        |                   | 10,430 |                |
| dor c               | H <sub>cB</sub> , Coercivity           | kA/m              | 795    | 11,200<br>1.12 |
| fic                 |                                        |                   | 25,000 |                |
| gne                 | H <sub>cJ</sub> , Intrinsic Coercivity | kA/m              | 1,500  | 2,000          |
| Ма                  | Blimey                                 | MGOe              | 27.0   | 28.9           |
|                     | BHmax, Maximum Energy Product          | kJ/m <sup>3</sup> | 215    | 230            |

|                     | Characteristic                           | Units                        | C //    | ст  |
|---------------------|------------------------------------------|------------------------------|---------|-----|
| Thermal Properties  | Reversible Temperature Coefficients (1)  |                              |         |     |
|                     | of Induction, α(Br)                      | %/°C                         | -0.0    | )35 |
|                     | of Coercivity, α(Hcj)                    | %/°C                         | -0.     | 25  |
|                     | Coefficient of Thermal Expansion (2)     | ΔL/L per °Cx10 <sup>-6</sup> | 11      | 13  |
|                     | Thermal Conductivity                     | W/(m•K)                      | 1       | 0   |
|                     | Specific Heat <sup>(3)</sup>             | J/(kg•K)                     | 0       |     |
| Ę                   | Max. Recommended Use Temperature         | °C                           | 350     |     |
|                     | Curie Temperature, Tc                    | °C                           | 82      | 25  |
|                     | Flowwood Strongth                        | psi                          | 17,400  |     |
|                     | Flexural Strength                        | MPa                          | 120     |     |
| Ś                   | Compressive Strength                     | psi                          | 116,000 |     |
| Other<br>opertie    | Compressive Strength                     | MPa                          | 800     |     |
| Other<br>Properties | Young's Modulus                          | GPa                          | 14      | 10  |
| ā                   | Density                                  | g/cm <sup>3</sup>            | 8.3     |     |
|                     | Hardness, Vickers                        | Hv                           | 600     |     |
|                     | Electrical Resistivity, ρ                | μΩ • cm                      | 90      |     |
| Notes:              | (1) Coefficients measured between 20 and | 150 °C                       |         |     |

(2) Between 20 and 200 °C

(3) Between 20 and 150 °C



#### **Demagnetization Curves**

Notes The material data and demagnetization curves shown above represent typical properties that may vary due to product shape and size. Demagnetization curves show nominal Br and Hcj.

Magnets can be supplied thermally stabilized or magnetically calibrated to customer specifications.

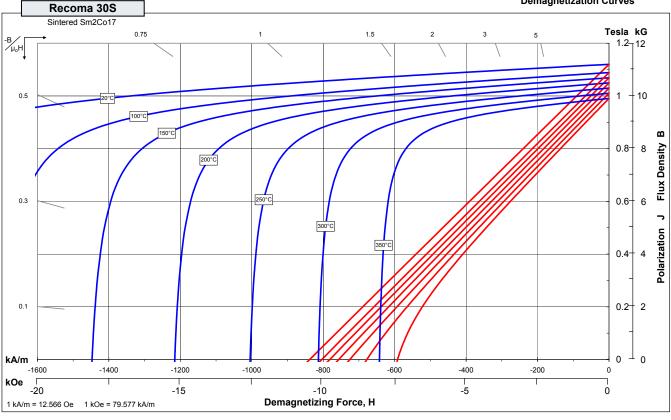
Additional grades are available. Please contact the factory for information.



### Recoma 30S

#### **Recoma® Sintered Samarium Cobalt Magnets**

These are also referred to as Rare Earth or SmCo magnets. The Recoma family of materials offer a combination of high magnetic output and excellent temperature stability. Please contact Arnold for additional grade information, application assistance and recommendations for protective coatings. Assemblies using these magnets can also be provided.


|                     | Characteristic                         | Units             | min.   | nominal        |
|---------------------|----------------------------------------|-------------------|--------|----------------|
| Magnetic Properties | Br, Residual Induction                 | Gauss             | 10,900 | 11,200         |
|                     | DI, Residual Induction                 | Tesla             | 1.09   | 1.12           |
|                     | H <sub>cB</sub> , Coercivity           |                   | 10,620 |                |
| Pro F               | T <sub>C</sub> B, Coercivity           | kA/m              | 820    | 11,200<br>1.12 |
| tic                 | H <sub>cJ</sub> , Intrinsic Coercivity | 020 0             | 27,000 |                |
| gne                 | COERCIVITY                             | kA/m              | 1,750  | 2,150          |
| Ма                  | PHmax                                  | MGOe              | 28     | 30             |
|                     | BHmax, Maximum Energy Product          | kJ/m <sup>3</sup> | 225    | 235            |

|                     | Characteristic                           | Units                        | C //    | C⊥ |
|---------------------|------------------------------------------|------------------------------|---------|----|
| sa                  | Reversible Temperature Coefficients (1)  |                              |         |    |
|                     | of Induction, α(Br)                      | %/°C                         | -0.035  |    |
| erti                | of Coercivity, α(Hcj)                    | %/°C                         | -0.     | 25 |
| Thermal Properties  | Coefficient of Thermal Expansion (2)     | ΔL/L per °Cx10 <sup>-6</sup> | 11      | 13 |
| al F                | Thermal Conductivity                     | W/(m•K)                      | 1       | 0  |
| erm                 | Specific Heat <sup>(3)</sup>             | J/(kg•K)                     | 350     |    |
| Ħ                   | Max. Recommended Use Temperature         | °C                           | 350     |    |
|                     | Curie Temperature, Tc                    | °C                           | 825     |    |
|                     | Elevural Strength                        | psi                          | 17,400  |    |
|                     | Flexural Strength                        | MPa                          | 120     |    |
| Ś                   | Compressive Strength                     | psi                          | 116,000 |    |
| Other<br>opertie    |                                          | MPa                          | 800     |    |
| Other<br>Properties | Young's Modulus                          | GPa                          | 14      | 10 |
| ā                   | Density                                  | g/cm <sup>3</sup>            | 8.3     |    |
|                     | Hardness, Vickers                        | Hv                           | 600     |    |
|                     | Electrical Resistivity, p                | μΩ • cm                      | 90      |    |
| Notes:              | (1) Coefficients measured between 20 and | 150 °C                       |         |    |

(2) Between 20 and 200 °C

(3) Between 20 and 150 °C

#### **Demagnetization Curves**



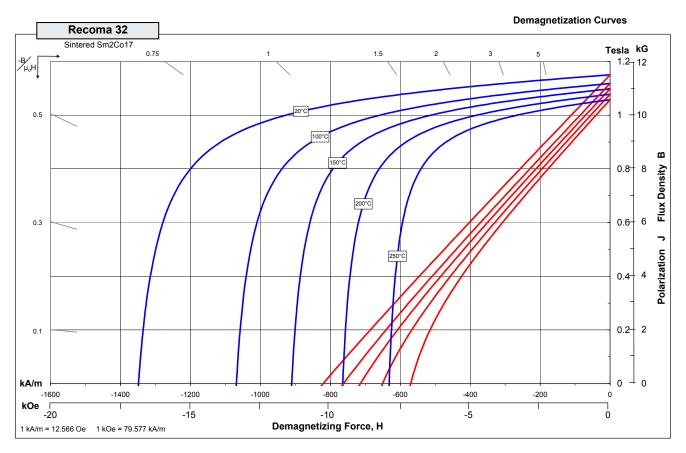
Notes The material data and demagnetization curves shown above represent typical properties that may vary due to product shape and size. Demagnetization curves show nominal Br and Hcj.

Magnets can be supplied thermally stabilized or magnetically calibrated to customer specifications.

Additional grades are available. Please contact the factory for information.



#### **Recoma® Sintered Samarium Cobalt Magnets**


These are also referred to as Rare Earth or SmCo magnets. The Recoma family of materials offer a combination of high magnetic output and excellent temperature stability. Please contact Arnold for additional grade information, application assistance and recommendations for protective coatings. Assemblies using these magnets can also be provided.

|                     | Characteristic                         | Units             | min.   | nominal |
|---------------------|----------------------------------------|-------------------|--------|---------|
|                     | Br, Residual Induction                 | Gauss             | 11,200 | 11,500  |
| es                  |                                        | Tesla             | 1.12   | 1.15    |
| Magnetic Properties |                                        | Oersteds          | 8,040  | 10,490  |
| Prot                | H <sub>cB</sub> , Coercivity           | kA/m              | 640    | 835     |
| tic F               | <b>H</b>                               | Oersteds          | 13,000 | 17,000  |
| gne                 | H <sub>cJ</sub> , Intrinsic Coercivity | kA/m              | 1,040  | 1,350   |
| Ма                  | BHmax, Maximum Energy Product          | MGOe              | 28     | 30      |
|                     |                                        | kJ/m <sup>3</sup> | 225    | 240     |

|                     | Characteristic                                  | Units                        | C //    | СТ |
|---------------------|-------------------------------------------------|------------------------------|---------|----|
|                     | Reversible Temperature Coefficients (1)         |                              |         |    |
| Thermal Properties  | of Induction, α(Br)                             | %/°C                         | -0.035  |    |
|                     | of Coercivity, a(Hcj)                           | %/°C                         | -0.25   |    |
| rop                 | Coefficient of Thermal Expansion <sup>(2)</sup> | ΔL/L per °Cx10 <sup>-6</sup> | 11      | 13 |
| al F                | Thermal Conductivity                            | W/(m•K)                      | 1       | 0  |
| nern                | Specific Heat <sup>(3)</sup>                    | J/(kg•K)                     | 350     |    |
| ⊨                   | Max. Recommended Use Temperature                | °C                           | 250     |    |
|                     | Curie Temperature, Tc                           | °C                           | 825     |    |
|                     | Elovural Strongth                               | psi                          | 17,400  |    |
|                     | Flexural Strength                               | MPa                          | 120     |    |
| ş                   | Compressive Strength                            | psi                          | 116,000 |    |
| Other<br>opertie    |                                                 | MPa                          | 80      | 00 |
| Other<br>Properties | Young's Modulus                                 | GPa                          | 140     |    |
| 4                   | Density                                         | g/cm <sup>3</sup>            | 8.3     |    |
|                     | Hardness, Vickers                               | Hv                           | 60      | 00 |
|                     | Electrical Resistivity, p                       | μΩ • cm                      | 90      |    |
| Notes:              | (1) Coefficients measured between 20 and        | 150 °C                       |         |    |

(1) Coefficients measured between 20 and (2) Between 20 and 200 °C





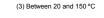
Notes The material data and demagnetization curves shown above represent typical properties that may vary due to product shape and size. Demagnetization curves show nominal Br and Hcj.

Magnets can be supplied thermally stabilized or magnetically calibrated to customer specifications.

Additional grades are available. Please contact the factory for information.



### Recoma 32S


#### **Recoma® Sintered Samarium Cobalt Magnets**

These are also referred to as Rare Earth or SmCo magnets. The Recoma family of materials offer a combination of high magnetic output and excellent temperature stability. Please contact Arnold for additional grade information, application assistance and recommendations for protective coatings Assemblies using these magnets can also be provided.

|                     | Characteristic                         | Units             | min.   | nominal |
|---------------------|----------------------------------------|-------------------|--------|---------|
| se                  | Br, Residual Induction                 | Gauss             | 11,200 | 11,500  |
|                     |                                        | Tesla             | 1.12   | 1.15    |
| erti                |                                        | Oersteds          | 9,800  | 10,680  |
| lop                 | H <sub>cB</sub> , Coercivity           | kA/m              | 780    | 850     |
| Magnetic Properties | u                                      | Oersteds          | 20,000 | 22,500  |
| gne                 | H <sub>cJ</sub> , Intrinsic Coercivity | kA/m              | 1,590  | 1,790   |
| Ма                  | BHmax, Maximum Energy Product          | MGOe              | 28     | 31      |
|                     |                                        | kJ/m <sup>3</sup> | 223    | 245     |

|                     | Characteristic                           | Units                        | С //    | С⊥  |
|---------------------|------------------------------------------|------------------------------|---------|-----|
|                     | Reversible Temperature Coefficients (1)  |                              |         |     |
| Thermal Properties  | of Induction, α(Br)                      | %/°C                         | -0.0    | )35 |
|                     | of Coercivity, α(Hcj)                    | %/°C                         | -0.25   |     |
| rop                 | Coefficient of Thermal Expansion (2)     | ΔL/L per °Cx10 <sup>-6</sup> | 11      | 13  |
| al P                | Thermal Conductivity                     | W/(m•K)                      | 1       | 0   |
| nerm                | Specific Heat <sup>(3)</sup>             | J/(kg•K)                     | 350     |     |
| Ę                   | Max. Recommended Use Temperature         | °C                           | 250     |     |
|                     | Curie Temperature, Tc                    | °C                           | 825     |     |
|                     | Flowwood Strongeth                       | psi                          | 17,400  |     |
|                     | Flexural Strength                        | MPa                          | 120     |     |
| s                   | O                                        | psi                          | 116,000 |     |
| ner<br>ertie        | Compressive Strength                     | MPa                          | 800     |     |
| Other<br>Properties | Young's Modulus                          | GPa                          | 14      | 10  |
| ā                   | Density                                  | g/cm <sup>3</sup>            | 8.3     |     |
|                     | Hardness, Vickers                        | Hv                           | 600     |     |
|                     | Electrical Resistivity, ρ                | μΩ • cm                      | 90      |     |
| Notes:              | (1) Coefficients measured between 20 and | 200 °C                       |         |     |

(2) Between 20 and 200 °C





#### **Demagnetization Curves**

Notes The material data and demagnetization curves shown above represent typical properties that may vary due to product shape and size. Demagnetization curves show nominal Br and Hcj.

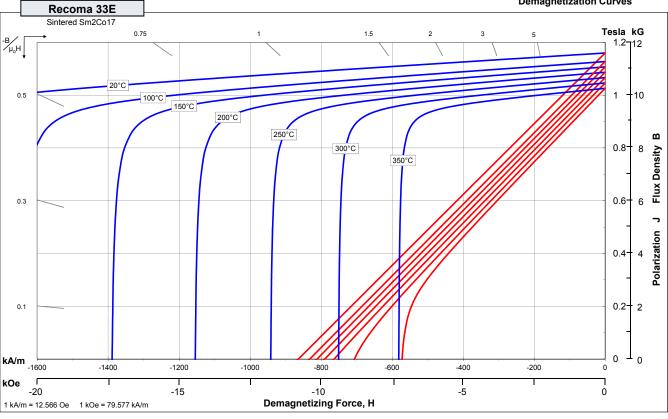
Magnets can be supplied thermally stabilized or magnetically calibrated to customer specifications.

Additional grades are available. Please contact the factory for information.



### Recoma 33E

#### **Recoma® Sintered Samarium Cobalt Magnets**


These are also referred to as Rare Earth or SmCo magnets. The Recoma family of materials offer a combination of high magnetic output and excellent temperature stability. Please contact Arnold for additional grade information, application assistance and recommendations for protective coatings. Assemblies using these magnets can also be provided.

|        | Characteristic                           | Units             | min.   | nominal |
|--------|------------------------------------------|-------------------|--------|---------|
|        | Br, Residual Induction                   | Gauss             | 11,400 | 11,600  |
| es     |                                          | Tesla             | 1.14   | 1.16    |
| Derti  | H <sub>cB</sub> , Coercivity             | Oersteds          | 10,620 | 10,870  |
| ic Pro |                                          | kA/m              | 845    | 865     |
|        | $\mathbf{H}_{cJ}$ , Intrinsic Coercivity | Oersteds          | 22,000 | 26,400  |
| gne    |                                          | kA/m              | 1,750  | 2,100   |
| Ма     | BHmax, Maximum Energy Product            | MGOe              | 30     | 32      |
|        |                                          | kJ/m <sup>3</sup> | 238    | 251     |

|                     | Characteristic                           | Units                        | C //    | СT |
|---------------------|------------------------------------------|------------------------------|---------|----|
|                     | Reversible Temperature Coefficients (1)  |                              |         |    |
| Se                  | of Induction, α(Br)                      | %/°C                         | -0.035  |    |
| erti                | of Coercivity, a(Hcj)                    | %/°C                         | -0.25   |    |
| Thermal Properties  | Coefficient of Thermal Expansion (2)     | ΔL/L per °Cx10 <sup>-6</sup> | 11      | 13 |
| al F                | Thermal Conductivity                     | W/(m•K)                      | 1       | 0  |
| erm                 | Specific Heat <sup>(3)</sup>             | J/(kg•K)                     | 350     |    |
| ч                   | Max. Recommended Use Temperature         | °C                           | 350     |    |
|                     | Curie Temperature, Tc                    | °C                           | 825     |    |
|                     | Flexural Strength                        | psi                          | 17,400  |    |
|                     |                                          | MPa                          | 120     |    |
| Ś                   | Compressive Strength                     | psi                          | 116,000 |    |
| Other<br>opertie    | Compressive Strength                     | MPa                          | Pa 800  |    |
| Other<br>Properties | Young's Modulus                          | GPa                          | 14      | 10 |
| ā                   | Density                                  | g/cm <sup>3</sup>            | 8.3     |    |
|                     | Hardness, Vickers                        | Hv                           | 600     |    |
|                     | Electrical Resistivity, p                | μΩ • cm                      | 90      |    |
| Notes:              | (1) Coefficients measured between 20 and | 200 °C                       |         |    |

(2) Between 20 and 200 °C

(3) Between 20 and 150 °C



#### **Demagnetization Curves**

Notes The material data and demagnetization curves shown above represent typical properties that may vary due to product shape and size. Demagnetization curves show nominal Br and Hcj.

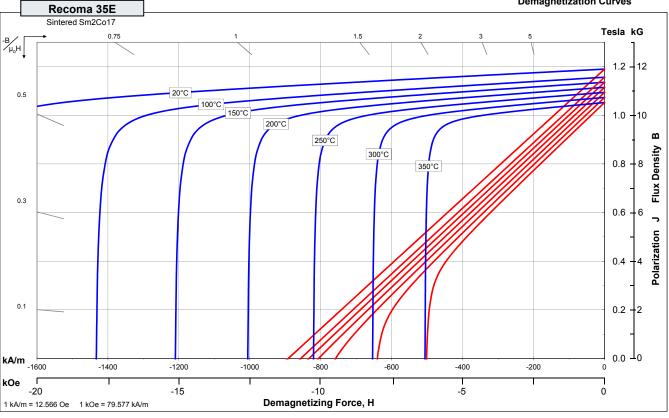
Magnets can be supplied thermally stabilized or magnetically calibrated to customer specifications.

Additional grades are available. Please contact the factory for information.



### Recoma 35E

### **Recoma® Sintered Samarium Cobalt Magnets**


These are also referred to as Rare Earth or SmCo magnets. The Recoma family of materials offer a combination of high magnetic output and excellent temperature stability. Please contact Arnold for additional grade information, application assistance and recommendations for protective coatings. Assemblies using these magnets can also be provided.

|                     | Characteristic                           | Units             | min.   | nominal |
|---------------------|------------------------------------------|-------------------|--------|---------|
|                     | Br, Residual Induction                   | Gauss             | 11,700 | 11,900  |
| es                  |                                          | Tesla             | 1.170  | 1.190   |
| erti                | H <sub>cB</sub> , Coercivity             | Oersteds          | 10,810 | 11,060  |
| Magnetic Properties |                                          | kA/m              | 860    | 880     |
|                     | $\mathbf{H}_{cJ}$ , Intrinsic Coercivity | Oersteds          | 21,000 | 23,000  |
| gne                 |                                          | kA/m              | 1,710  | 1,800   |
| Ma                  | BHmax, Maximum Energy Product            | MGOe              | 32.0   | 33.3    |
|                     |                                          | kJ/m <sup>3</sup> | 255    | 265     |

|                     | Characteristic                           | Units                        | C //    | ст |
|---------------------|------------------------------------------|------------------------------|---------|----|
|                     | Reversible Temperature Coefficients (1)  |                              |         |    |
| Thermal Properties  | of Induction, α(Br)                      | %/°C                         | -0.035  |    |
|                     | of Coercivity, α(Hcj)                    | %/°C                         | -0.     | 25 |
| rop                 | Coefficient of Thermal Expansion (2)     | ΔL/L per °Cx10 <sup>-6</sup> | 11      | 13 |
| al P                | Thermal Conductivity                     | W/(m•K)                      | 1       | 0  |
| erm                 | Specific Heat <sup>(3)</sup>             | J/(kg•K)                     | 350     |    |
| Ę                   | Max. Recommended Use Temperature         | °C                           | 300     |    |
|                     | Curie Temperature, Tc                    | °C                           | 820     |    |
|                     | Flexural Strength                        | psi                          | 17,400  |    |
|                     |                                          | MPa                          | 120     |    |
| Ś                   | Compressive Strength                     | psi                          | 116,000 |    |
| Other<br>opertie    | Compressive Strength                     | MPa                          | 800     |    |
| Other<br>Properties | Young's Modulus                          | GPa                          | 14      | 10 |
| ā                   | Density                                  | Mg/m <sup>3</sup>            | 8.3     |    |
|                     | Hardness, Vickers                        | Hv                           | 600     |    |
|                     | Electrical Resistivity, ρ                | μΩ • cm                      | 90      |    |
| Notes:              | (1) Coefficients measured between 20 and | 200 °C                       |         |    |

(2) Between 20 and 200 °C

(3) Between 20 and 150 °C



#### **Demagnetization Curves**

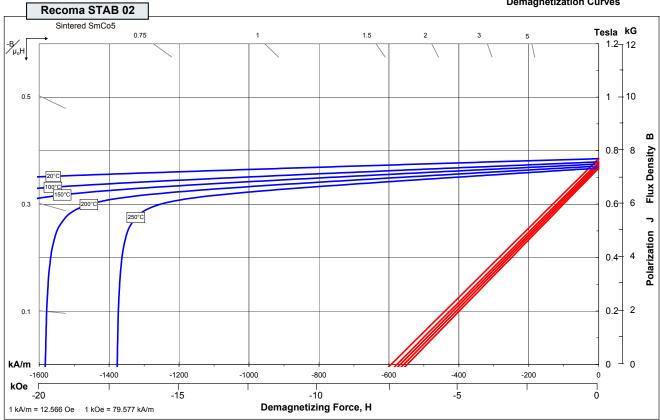
Notes The material data and demagnetization curves shown above represent typical properties that may vary due to product shape and size. Demagnetization curves show nominal Br and Hcj.

Magnets can be supplied thermally stabilized or magnetically calibrated to customer specifications.

Additional grades are available. Please contact the factory for information.



### Recoma STAB 02


### **Recoma® Sintered Samarium Cobalt Magnets**

The family of Recoma STAB magnets offer a combination of high magnetic output, excellent temperature stability. Grade STAB 02 is one of many in this family of temperature stabilized materials. STAB grades exhibit very low reversible temperature coefficients of induction suitable for such applications as TWTs, undulators and wigglers. Please contact Arnold for additional grade and application information.

|                     | Characteristic                           | Units             | min.   | nominal |
|---------------------|------------------------------------------|-------------------|--------|---------|
|                     |                                          | Gauss             | 7,300  | 7,700   |
| es                  | Br, Residual Induction                   | Tesla             | 0.73   | 0.77    |
| Magnetic Properties | H <sub>cB</sub> , Coercivity             | Oersteds          | 6,850  | 7,540   |
| pop                 |                                          | kA/m              | 545    | 600     |
| atic                | $\mathbf{H}_{cJ}$ , Intrinsic Coercivity | Oersteds          | 25,000 | 30,000  |
| gne                 |                                          | kA/m              | 2,000  | 2,400   |
| Ma                  | BHmax, Maximum Energy Product            | MGOe              | 13     | 15      |
|                     |                                          | kJ/m <sup>3</sup> | 100    | 115     |

|                     | Characteristic                                  | Units                        | <b>C</b> // | C⊥ |
|---------------------|-------------------------------------------------|------------------------------|-------------|----|
|                     | Reversible Temperature Coefficients (1)         |                              |             |    |
| Thermal Properties  | of Induction, α(Br)                             | %/°C                         | -0.         | 02 |
|                     | of Coercivity, a(Hcj)                           | %/°C                         | -0.         | 19 |
| rop                 | Coefficient of Thermal Expansion <sup>(2)</sup> | ΔL/L per °Cx10 <sup>-6</sup> | 7           | 14 |
| al F                | Thermal Conductivity                            | W/(m•K)                      | 1           | 1  |
| nerm                | Specific Heat <sup>(3)</sup>                    | J/(kg•K)                     | 370         |    |
| Ę                   | Max. Recommended Use Temperature                | °C                           | 250         |    |
|                     | Curie Temperature, Tc                           | °C                           | 725         |    |
|                     | Elevural Strength                               | psi                          | 17,400      |    |
|                     | Flexural Strength                               | MPa                          | 120         |    |
| ø                   | Compressive Strength                            | psi                          | 145,000     |    |
| Other<br>Properties | Compressive Strength                            | MPa                          | 1000        |    |
| 10 Off              | Young's Modulus                                 | GPa                          | 14          | 10 |
| ٩                   | Density                                         | g/cm <sup>3</sup>            | 8.4         |    |
|                     | Hardness, Vickers                               | Hv                           | 600         |    |
|                     | Electrical Resistivity, p                       | μΩ • cm                      | 55          |    |
| Notes:              | (1) Coefficients measured between 20 and        | 150 °C                       |             |    |

(2) Between 20 and 200 °C (3) Between 20 and 150 °C



#### **Demagnetization Curves**

Notes The material data and demagnetization curves shown above represent typical properties that may vary due to product shape and size. Demagnetization curves show nominal Br and Hcj.

Magnets can be supplied thermally stabilized or magnetically calibrated to customer specifications.

Additional grades are available. Please contact the factory for information.