

- Two factors have had a profound affect on the magnetic materials market.
- First, the market has been highly disrupted, especially with respect to rare earth magnets, the strongest commercially available permanent magnets and
- The realization that future demands for magnetic material products will increase dramatically corresponding with increased demand for electric power generation and use.
- This presentation forms the introduction to the series of talks to be heard over the next three days.

• We'll start this presentation with a brief description of the market situation.

- Our survival depends upon successfully thwarting entropy.
- Interestingly, we do that by using energy.
- Energy is, thus, hugely important to our quality of life.
- ³/₄ of the world's population is improving their standard of living and increasing their use of energy.
- We must work on developing renewable sources of energy while simultaneously reducing reliance on and increasing efficiency of generation and use of conventionally produced energy.

- As we progress in the transition to renewable energy sources we need to consider the entire supply chain.
- Through knowledge we can make the best decision related to our technologies balancing risk and benefit.

- Lawrence Livermore National Laboratories (LLNL) has produced Sankey diagrams for energy production, distribution and use for many countries.
- This is available in a downloadable document at:
- https://flowcharts.llnl.gov/content/international/2007EnergyInternational.pdf
- https://flowcharts.llnl.gov/
- https://flowcharts.llnl.gov/archive.html#international_archive
- Additional information is available from the US Energy Information Administration at:
- http://www.eia.gov/energyexplained/index.cfm?page=electricity_use
- This chart shows dramatic low yield of energy in production and delivery to the user. From year-to-year the figures vary but show consistently below 50% arriving at the point of use.

- Permanent and soft magnetic materials are useful in the production, distribution and use of energy, particularly electrical energy.
- In electric power generation and use, permanent magnet materials improve efficiency.
- Improvements in price/performance of permanent magnets (and soft magnetic materials) are increasingly important.

• The importance of the magnetic hysteresis loop dictates that we review the key figures of merit. Here we'll focus on permanent magnet materials.

- For permanent magnets, we are primarily interested in the 2nd quadrant of the hysteresis loop.
- This illustration is typical of the "demag" curves presented in product literature for ferrite, SmCo and Neo magnets.
- The key figures of merit for permanent magnet materials are indicated on this chart.
- The maximum energy product can be estimated from just the Br as shown in the equation assuming an appropriate value for recoil permeability.
- Conversely, the Br can be estimated when the maximum energy product is known.
- These calculations can only be made with a "straight line" material (such as ferrite, neo and SmCo magnets).
- As shown here, this material would be considered a straight line (Normal curve) or square loop (Intrinsic curve) material since the Normal curve is straight (at least to the maximum energy point).

- We often present the improvement in energy product in charts such as this it's visually eye-catching.
- Please note that all the products shown are still used to some extent.
- Each material has a unique combination of properties that makes it well-suited to certain applications.
- This is suggested by the note in the upper left of the chart indicating that many other characteristics must be considered.

- Improvements in energy product that have facilitated modern applications can be shown pictorially.
- The "V" under each product name is the magnet volume. For example, an N48 magnet with a V of 0.22 cubic centimeters provides the same magnetic field density (strength) near the pole as a ceramic magnet that is 89 times larger.
- Wherever small size and low weight are preferred, rare earth magnets are highly beneficial.
- System size depends also on the steel flux path. For example a larger, weaker magnet requires a larger structure with more steel for the flux return path.

- This is a typical manufacturer's chart of second quadrant curves as a function of temperature.
- Both Intrinsic and Normal curves are shown.
- This material grade, N42UH, is rated to 180 °C.
- But performance to 220 °C is shown here to emphasize the diminishing Hci.

- As we examine applications for neo magnets more closely, we become aware of the important issue of the forecast "shortage" of dysprosium.
- Hcj is a measure of a magnet's "resistance to demagnetization." Br is a measure of a magnet's field strength. In both cases, generally the larger the number, the better.
- Additions of dysprosium increase Hcj but reduce Br.
- In terms of relative abundance in the crust of the earth, dysprosium is less than 1% of all rare earths and, where it is present in higher percentages, it is most often accompanied by either thorium or uranium, both of which are radioactive.
- The only known occurrence of dysprosium ore without significant radioactive by-products is the ion adsorption clays of southern China.
- Those deposits are estimated to have a 15 to 25 year life at current rates of consumption.
- Dysprosium is required to allow Neo magnets to be used at elevated temperatures, that is above 80 °C, especially in the presence of demagnetizing stress such as in motors and generators.
- We see in this chart that wind power uses Neo with over 4% dysprosium and that traction drives use 8-12% both represent usage that is considerably higher than the natural abundance.

) IOLOGI	ES									
Dy	ysp	oros	ium	ı is	a S	hor	t &	Lon	g T	er	m I	ssue)
			Pote	ential Sou	irces of A	dditional	Produc	tion betwe	en 2010	and 2()15	5	
			United	States	Australia			Vietnam	South Africa	R		roducti	
		2010 Production ⁶⁶	Mt. Pass Phase I ⁷²	Mt. Pass Phase II	Mt. Weld ⁷³	NolansBore ⁷⁴	Dubbo Zirconia ⁵⁵	Dong Pao [™]	Steenkamp <i>s</i> - kraal ⁷⁷	Russia & Kazakhs-tan	India ⁷¹	Total 2015 P Capacity	
	La	31,000	5,800	6,800	5,600	2,000	510	970	1,100	140	560	54,000	
(Ce	42,000	8,300	9,800	10,300	4,800	960	1,500	2,300	290	1200	81,000	Supply
	Pr	5,900	710	840	1,200	590	110	120	250	20	140	9,900	Increase
٦	Nd	20,000	2,000	2,300	4,100	2,200	370	320	830	44	460	33,000	65% increase
S	Sm	2,800	130	160	510	240	56	27	125	5	68	4,000	43% increase
I	Eu	370	22	26	88	40	2		4	1		550	
C	Gd	2,400	36	42	176	100	56		83	1	30	3,000	
1	Tb	320	5	6	22	10	8		4	0.4		370	
C	Dy	1,600	9	10	22	30	53		34	1		1,700	6% increase
	Y	10,500			66		410	21	250			11,300	
Ot	thers	2,000	73	86			75	25	12	3	25	2,300	
Тс	otal	120,000	17,000	20,000	22,000	10,000	2,600	3,000	5,000	500	2,500	200,000	
		DO	E Critical	Quantiti Materials	es are me Strategy	tric tons of the tric t	of Rare E sion Jan	arth Oxides	6 12: Table	4.2. p.8	34		
	1	20				,			_,	, p.c			
lorld To	ouches Y	our World Eve	ery Day		© Arno	old Magnet	tic Techn	ologies					13

- Rare earth elements are recognized as crucial to the success of clean energy initiatives.
- The United States Department of Energy (DOE) produced a document in December, 2010 called the Critical Materials Strategy.
- It was a thorough document and covered almost every element in the periodic table more than just rare earths.
- The study continued during 2011 and a second, updated report was issued in late December 2011.
- Be sure to obtain the final version: http://energy.gov/sites/prod/files/DOE_CMS2011_FINAL_Full.pdf
- This table is from the report. It shows supply of the light magnet rare earths growing by 43% (samarium) and 65% (neodymium) between 2010 and 2015.
- However, dysprosium is shown increasing just 6%. It may be lower than this as many deposits have so little dysprosium as to be uneconomical to separately extract.
- Note that this table is for rare earth **oxides**, not metals.

• Permanent magnet R&D is focused on one or two objectives: increasing magnetic output of low cost materials and/or reducing the net material cost of higher performing materials.

- Though we should try, it may not be possible to develop a superior permanent magnet with no rare earth.
- Success should be recognized for superior materials with less rare earth content.
- Actinide magnets are not recommended as the constituents are hazardous (radioactive and toxic) materials.
- Exchange-coupled magnet materials represent the best chance for a new, high performance magnetic material
- Second place goes to development of an entirely new material.

- Research activities into new magnetic materials include a bottoms-up (design) approach a search for a new magnetic phase.
- Other thoughts related to a good magnetic material...
- To obtain full benefit from the magnetic material, it should be fully dense (no dilution of the magnetic phase), it should have uniaxial crystalline anisotropy (for maximizing magnetic saturation), and magnetic domains should be oriented within the bulk structure.
- Raw materials need to be widely available and at reasonable cost.
- Raw materials and the finished composition must be non-toxic and environmentally friendly.
- The material should be easily and safely manufacturable.
- The magnets should be recyclable.

- Exchange coupled magnets derive their name from a synergistic combination of magnetic properties resulting from two dissimilar components: a hard and a soft magnetic phases interacting in a synergistic way.
- The hard phase provides resistance to demagnetization and the soft phase provides exceptionally high saturation magnetization.
- Exchange coupling results in a fortuitous combination of properties: both high saturation and intrinsic coercivity.

- In the case of a large microstructure (measured in microns) there is extremely weak coupling.
- Magnet properties are closely approximate to the volume-based average of properties of the individual components.
- In this bonded magnet example, 1060 grade is ferrite, 1202 grade is 100% neo powder and 1401 is a 20% by weight neo-in-ferrite blend.
- As temperature deviates from 20 °C, one notes that neo coercivity decreases while ferrite coercivity increases. At a 20% neo blend, these changes roughly balance creating an interesting mixture.
- However, there is little if any evidence of exchange coupling.

- In this example of Magnequench's MQP-Q, exchange occurs at the nano-scale of between 20 and 30 nano-meters.
- At this scale, it is a weak exchange producing a compromise between Br and Hcj.
- This grade of material is a mixture of Neo (2:14:1) and alpha-iron.
- A similar exchange couple (exchange spring) material was patented by Philips in the late 1980's and consisted of Neo plus Fe_3B .

- To achieve beneficial exchange requires coupling at just above the super-paramagnetic size limit.
- In this event, the coupling might be expected to show high Br, high Hcj and a loop shape similar to the hard magnetic phase.
- Achieving this fine a coupled microstructure is challenge number one.
- The second challenge is to have particulate that can be rotated to achieve common domain orientation.
- The last and great challenge is to be able to densify the particulate to full or near-full density.
- It may, alternatively, be possible to freeze-in from the melt a microstructure at very fine sizes, similar to but smaller than those in alnico magnets, so that a dense structure exists naturally.

- I've included this slide on Heusler alloys due to the interesting crystalline structure.
- They were first identified as a family of materials in 1905 and have found a recent revival in spintronics.
- They exhibit uniaxial crystalline anisotropy.
- They are one example of how structure might be the source of good magnetic properties in a new material.
- A Heusler alloy is a ferromagnetic metal alloy based on a Heusler phase. Heusler phases are intermetallics with particular composition and face-centered cubic crystal structure. They are ferromagnetic—even though the constituting elements need not be—as a result of the double-exchange mechanism between neighboring magnetic ions. The latter are usually manganese ions, which sit at the body centers of the cubic structure and carry most of the magnetic moment of the alloy.

(Wikipedia)

• What are the "elements of magnetics"?

ARNOLD [®] MAGNETIC TECHNOLOGIES	
What are the "Elements of Magnetics"	
 Magnetic characteristics that make a material useful 	
The economics around those materials	
 Raw material costs and availability Manufacturability and yield Dynamic market changes – when supply cannot keep up with changing demand 	
The physical elements that constitute magnetic materials	
 Which elements contribute to the net magnetic moment and magnetic stability of a permanent (or soft) magnetic material 	
 The ability to transform those materials into a useful product 	
Our World Touches Your World Every Day © Arnold Magnetic Technologies	23

• These are four "fundamental elements" of the magnetic materials industry.

- Any discussion of commercial viability has to start with the premise that the raw materials are readily available and at a reasonable cost.
- As a primary ingredient, it's highly recommended to select more readily available materials such as those above the green dashed line.
- Minor ingredients may be from between the green and red lines.
- But elements from below the dashed red line should be avoided except in the very smallest additions.

			RN GNETI	C TEC		OGIES												
	Group 1 IA				Pei	riodi	c Tak	ole o	f the	Elen	nents	s - Co	ompl	ete				18 VIIIA
	1 1.00794 H							F	Ref. Verl	ex42.co	m							2 4.0026 He
1	Hydrogen 1:1	2 11A											13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	Helium VIIA
	3 6.941	4 9.01218 Do	Phase Gas	e at STP Liquid	Solid	Synthetic							5 10.011	6 12.0103	7 14.0067	8 15.9994	9 18.9964	10 20.1797
2	LI Lithium	Beryllium	Categ	jories	_	Noble Gan							Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon
	+1 11 22.9696	+2 12 24.305	Alkali Tra	ine Earth Metals risition Metals		Halogens Von-metals							+3 13 26.9015	+2,4/.4	+1,2,3,4,5/-1,2,3	-2 16 32.065	.1 17 35.453	0
3	Na Sodium	Mg Magnesium	Rar F	re Earth Metals Poor Metals		Metalloids							Al	Si Silicon	P Phosphorus	S Sulfur	CI Chlorine	Ar Argon
	[Ne] 3s1 +1	[Ne] 3s2 +2	IIIB	4 IVB	VB	VIB	VIIB	vill	VIII	VIII	II IB	1Z IIB	10. +3	IVA +2,4/4	VA +3,5/3	VIA +4,6/-2	YIU. +1,5,7/-1	VILA 0
ē,	19 34.0663 K	20 400/8 Ca	21 44.9099 Sc	²² 17.38	23 90.945 V	24 91.9961 Cr	25 Mn	26 93.80 Fe	27 16.9332 Co	28 salassi Ni	Cu	Zn	31 64.725 Ga	Ge	AS	Se	³⁰ ^{ALSUA}	Kr
, Pe	Potassium [³ / ₁] 4s1 +1	Calcium [Ar] 4s2 +2	Scandium [Ar] 3d1 4s2 +3	Titanium [Ar] 3d2 4s2 +2.3.4	Vanadium [Ar] 3d3 4s2 +2.3.4.5	Chromium [Ar] 3d5 4s1 +2.3.6	Manganese [Ar] 3d5 4t2 +2.3.4.7	Iron [Ar] 3d6 4s2 +2.3	Cobalt [Ar] 3d7 4t2 +2.3	Nickel [Ar] 3d8 4s2 +2,3	Copper [Ar] 3d10 4t1 +1.2	Zinc [Ar] 3d10 4s2 +2	Gallium [Ar] 3d10 4s2 4p1 +3	Germanium [Ar] 3d10 4t2 4p2 +2.4	Arsenic [Ar] 3d10 4s2 4p3 +3.5/3	Selenium [Ar] 3d10 4c2 4c4 +4.6/2	Bromine [Ar] 3d10 4s2 4p5 +1.5/-1	Krypton [Ar] 3d10 4s2 4p6 0
	37 85.4676 Rb	38 \$7.62 Sr	39 at.aaa Y	40 91.224 Zr	41 92.9064 Nb	42 95.94 Мо	43 % Tc	44 101.07 Ru	45 102.996 Rh	46 106.42 Pd	47 107.060 Act	48 112411 Cd	49 114.818 In	50 118.71 Sn	51 121.76 Sb	52 127.6 Te	53 126.904	54 131.283 Xe
6	Rubidium [Kr] 5s1	Strontium	Yttrium [Kr] 4d1 5s2	Zirconium [Kr] 4d2 5s2	Niobium [Kr] 4d4 5s1	Molybdenum [Kr] 4d5 5s1	Technetium [Kr] 4d5 5s2	Ruthenium [Kr] 4d7 5s1	Rhodium [Kr] 4d8 5s1	Palladium (Kr) 4d10	Silver (Kr) 4d10 5c1	Cadmium [Kr] 4d10 5s2	Indium [Kr] 4d10 5s2 5p1	Tin (Kr) 4d10 5s2 5p2	Antimony [Kr] 4d10 5s2 5p3	Tellurium [Kr] 4410 552 5p4	lodine (Kr) 4d10 5s2 5p5	Xenon [Kr] 4410 5s2 5p6
	55 132.905	56 137.327 Do	~	72 178.49	73 180.948 To	74 183.84 \A/	75 106.207 Do	76 190.23	77 192.217	78 195.076	79 196.967 A	80 200.59	81 204.363 TI	82 207.2 DL	83 206.96	84 209	85 210	86 222 Din
6	Cesium [Xe] 6s1	Da Barium [Xe] 6s2	Lanthanide Series	Hafnium [Xe] 4#14 5d2 6s2	I d Tantalum [Xe] 414 5d3 6s2	VV Tungsten [Xe] 4114 544 652	Rhenium [Xe] 414 5d5 6s2	OS Osmium [Xe] 414 546 652	II Iridium [Xe] 4114 5d7 6z2	Platinum [Xe] 4714 549 651	Gold [Xe] 414 5410 611	Mercury [Xe] 414 5d10 6s2	Thallium (Hg) 6p1	PD Lead [Hg] 6p2	DI Bismuth (Hg) 6p3	PO Polonium [Hg] 6p4	AL Astatine [Hg] 6p5	Radon [Hg] 6p6
	87 223 Er	88 28 Do		104 26	105 262	106 266	107 264	108 277	109 268 B/L4	110 201	111 272 D cr	112 200	113 nb	114 208	115 n/a	116 292	117 n/a	118 nb
7	Francium	Radium	Actinide	Rutherfordium	DD Dubnium	Seaborgium	Bohrium	Hassium MB	IVI L Heitnerium	DS Darmstadtium	Roentgenium	Copernicium	Ununtrium	Ununquadium	Ununpentium	Ununhexium	Ununseptium	Ununoctium
	+1	+2	361163	+4	0	0	0	0	0	0	0	0	0	0	0	0	ů	Û
		nides	57 138.986 La	58 140.11 Ce	59 148.986 Pr	60 144.24 Nd	61 143 Pm	62 198.36 Sm	63 191.964 Eu	64 197.29 Gd	65 198.929 Tb	66 162.5 DV	67 164.93 Ho	68 167.299 Er	69 168.934 Tm	70 173.04 Yb	71 174.967 Lu	r
		Lantha	Lanthanum [Xe] 5d1 6s2	Cerium [Xe] 4f1 5d1 6s2	Praseodymium [Xe] 413 632	Neodymium [Xe] 494 6s2	Promethium [Xe] 45 6s2	Samarium [Xe] 486 6s2	Europium [Xe] 477 6s2	Gadolinium [Xe] 477 5d1 6s2	Terbium [Xe] 479 6s2	Dysprosium [Xe] 410 6s2	Holmium [Xe] 4111 6s2	Erbium [Xe] 412 6s2	Thulium [Xe] 413 6s2	Ytterbium [Xe] 414 6s2	Lutetium [Xe] 414 561 682	
		8	89 227	90 232.03 TL	91 231.036	92 230.029	93 237 Maria	94 244	95 243	96 247	97 247	98 21	99 212	100 20	101 238	102 299	103 262	
		Actinide	AC Actinium [Rn] 8d1 7s2	1 N Thorium [Fn] 6d2 7s2 +4	Pa Protactinium	Uranium	Neptunium	PU Plutonium	AM Americium	Curium	B K Berkelium	CT Californium	ES Einsteinium	Fm Fermium	IVI CI Mendelevium	Nobelium	L F Lawrencium	
																		1
6	-																	
	• 0	Our World	Touches	Your Worl	d Every Da	ay		© Arno	ld Magne	tic Tech	nologies							25

- Let's work with the periodic table to see what elements are likely candidates for use in magnetic materials.
- I will use a method similar to that of Bill McCallum of Ames Laboratory who kindly shared his notes with me some time ago (though this approach is solely my responsibility).
- This table was obtained from Vertex in Excel format. It has been modified to simplify the information in each cell. Go to www.vertex42.com for this and other useful spreadsheets and documents.
- This first table lists all of the elements.

Gr	roup 1 IA 1.00794					P (No:	eriod Synthetic	lic Ta , Radioacti	able ive, Inert, T	of the Toxic, Rare	e Ele	emen ming Elem	ts ents					18 VIIIA 2 40		
Hy Li P	C contraction cont	2 IIA 4 9.01210 Be Beryllium [Hit] 242 +2 12 24.309	Phas Gas Cates	e at STP Liquid gories Nkai Metats line Earth Metats anothin Metats	Solid	Synthetic Noble Gas Halogers Non-motals							13 IIIA 5 10.011 B Boron IIA +3 13 26.9619	14 IVA 6 12.0107 C Carbon IVA +2.444 14 20.0835	15 VA 7 14.0067 Nitrogen VA +1.2.3.4.54.1.2.3 15 30.9736	16 VIA 8 13.9994 Oxygen VIA -2 22.000	17 VIIA 9 18.9994 Fluorine 117 30.443	4 10 4 10 10 10 10 10 10 10 10 10 10		
Sc P	Na odium +1	Mg Magnesium [Ne] 382 +2	Ra 3 IIIB	re Earth Metals Poor Metals 4 IVB	5 VB	6 VIB	7 VIIB	8 VIII	9 VIII	10 VIII	11 IB	12 IIB		Silicon WA +2,4/4	Phosphorus VA +3,5/-3	S Sulfur VIX +4,822	Cl Chlorine MA 41,5,741	1		
	38.0983 K assium 1/ 421 +1		21 44.3039 Sc Scandium [Ar] 3d1 452 +3	22 47.067 Ti Titanium [Ar] 3d2 4s2 +2.3.4	7 23 50.9415 V Vanadium [Ar] 343 452 +2.3.4.5	24 31.9961 Cr Chromium [Rr] 3d5 4c1 +2.3.6	25 \$4.338 Manganese [kr] 345 422 +2.3.4.7	26 99.849 Fe Iron [Rr] 346 452 +2.3	27 58.933 Cobalt [At] 3d7 4s2 +2.3	28 98.6934 Ni Nickel [Ar] 348 452 +2.3	29 63.54 Cu Copper [Ar] 3d10 4c1 +1.2	5 30 53.469 Zn Zinc [Ar] 3d10 4s2 +2	31 69.723 Ga Gallium [Ar] 3d10 4s2 4p1 +3	32 72.64 Ge Germanium [Ar] 3410 452 452 +2.4	33 74.9216 As Arsenic [81] 3610 462 493 49.5/3	34 78.96 See Selenium [Ar] 3410 462 464 +4.642		36 Ki [J/] S		
7 Rul	es.4678 Rb bidium (r) 5e1 +1	38 87.62 Sr Strontium [Kr] 552 +2	39 88.8009 Y Yttrium [Kr] 4d1 552 +3	40 91.224 Zr Zirconium [Kr] 442 5s2 +4	41 32.3064 Nb Niobium (Kr) 444.5c1 +3.5	42 80.94 Mo Molybdenum [Kr] 4d5 5s1 +6	43 \$6 Tc Technetium [(0] 445 552 +4.7	44 191.07 Ru Ruthenium (Kr) 447 551 +8	45 102.90 Rh Rhodium [Kr] 448 5r1 +3	46 106.42 Pd Palladium (Kr) 4410 +2.4	47 107.88 Ag Silver (Kr) 4410 5s1 +1	48 112.411 Cd Cadmium [K1] 4110 552 +2	49 114.818 In Indium [Kr] 4410 552 5p1 +8	50 118.71 Sn Tin (Kr) 4410 552 5p2 +2.4	51 121.76 Sb Antimony (K1) 4110 5x2 5p3 +0.513	62 127.6 Te Tellurium [Kr] 4410 5x2 5p4 +4.642	63 126.994 lodine (Kr) 4d10 5s2 5p5 +1.5.7/1	54) [[6] 4		
Ci D	132.905 CS esium (e) 6=1	56 137.322 Ba Barium (76) 562	Lanthanide Series	72 178.45 Hf Hafnium [Xe] 4114 5d2 6s2	73 120.948 Ta Tantalum [Xe] 414 5d3 6s2	74 183.84 W Tungsten [Xe] 414 5d4 6s2	75 108.207 Re Rhenium (Xe) 414 545 622 +4 67	76 190.23 Os Osmium [Xe] 414 546 642 +3 4	77 192.217 Ir Iridium (Xe) 414 567 622 +3.4	78 193.076 Pt Platinum [Xe] 414 549 5c1 +2 4	79 196.967 Au Gold [Xe] 414 5610 681	7 80 200.39 Hg Mercury (Xe) 414 5410 862	181 204.383 TI Thallium (Hg) 6p1 +1.3	82 207.2 Pb Lead (Hg) 692 +2 4	83 200.99 Bi Bismuth (Ha) 6p3	84 209 Po Polonium [Hg] 694	85 210 At Astatine [Hg] 6p5	86 F 1		
Fra	223 Fr incium 1751 1	88 224 Ra Radium [Rn] 782 +2	Actinide Series	104 261 Rf Rutherfordium 118 +4	i 105 262 Db Dubnium V8 0	106 266 Sg Seaborgium VIB 0	107 264 Bh Bohrium VIB 0	108 277 Hs Hassium VIB 0	109 28 Mt Heitnerium VIIB 0	110 281 DS Darmstadtium VIIB 0	111 27 Rg Roentgenium IB 0	2 112 285 Cn Copernicium IB 0	113 no Uut Ununtrium IIX 0	114 209 Uuq Ununquadium	115 na Uup Ununpentium	116 292 Uuh Ununhexium VIA 0	117 na Uus Ununseptium	118 L		
		Lanthanides	57 138.906 La Lanthanum [X0] 541 692 +3	58 140.116 Ce Cerium [Xe] 411 541 632 +3,4	59 140.900 Pr Praseodymium [Xe] 43 6s2 +3	60 144.24 Nd Neodymium [Xe] 444 6s2 +3	61 143 Pm Promethium [X0] 45 602 +3	62 198.36 Samarium [Xe] 46 612 +2,3	63 191.96 Eu Europium (%) 47 6% +2,3	64 197.29 Gd Gadolinium [Xe] 47 5d1 6s2 +3	65 198.92 Tb Terbium (Xe) 479 682 +3	66 162.5 Dy Dysprosium [Xe] 410 612 +3	67 161.93 Ho Holmium [X6] 411 692 +3	68 167.299 Er Erbium [X0] 412 652 +3	69 168.934 Tm Thulium [Xe] 4113 622 +3	70 173.04 Yb Ytterbium [X0] 4714 652 +2,3	71 174.967 Lu Lutetium [X0] 4714 561 692 +3			
		Actinides	Actinium	90 232.03 Th Thorium (Ent 642.7%2	Protactinium	92 238.029 U Uranium	93 237 Np Neptunium	94 244 Pu Plutonium	95 24 Am Americium	Cm Curium	97 24 Bk Berkelium	7 98 291 Cf Californium	99 232 Es Einsteinium	100 297 Fm Fermium	101 238 Md Mendelevium	102 299 No Nobelium				

- After removing man-made elements, those that are radioactive, inert elements, toxic elements, those elements that are truly rare, the inert (noble) gases, and the rock (salt) forming elements, we are left with the elements in this chart.
- We're down from 90 naturally occurring elements to about 36.
- Let's ask a question: what elements have been used over the last 150 years to make magnetic materials?

	ent	SI	n	EX	ÍS	tin	gГ	Ma	gn	et	ic Materials
oft Magnetic Mater	Maj	jor co	onstit	uent	ts		Mir	nor co	onsti	tuen	t: Comments
Iron	Fe										Low carbon mild steel
Silicon Steel	Fe						Si				Si at 2.5 to 6%
Nickel-Iron	Fe	Ni									Ni at 35 to 85%
Moly Permalloy	Ni	Fe					Мо				Ni at 79%, Mo at 4%, bal. Fe
Iron-Cobalt	Fe	Со					V				23 to 52% Co
Soft Ferrite	Fe	Mn	Ni	Zn			0				
Metallic Glasses	Fe	Co	Ni				В	Si	Р		Amorphous and nanocrystalline
ermanent Magnets											
Co-Steels	Fe	Со									
Alnico	Fe	Ni	Со	A	Cu		Ti	Si			
Platinum Cobalt	Pt	Со									
Hard Ferrites	Fe	Sr									Oxygen dilutes; Ba no longer used
SmCo	Со	Sm	(Gd)	Fe	Cu	Zr					
Neodymium-iron-bor	or Fe	Nd	Dy	(Y)	В	Со	Cu	Ga	А	Nb	
Cerium-iron-boron	Fe	Nd	Ce	В							Limited use in bonded magnets
SmFeN	Fe	Sm	Ν								Nitrogen is interstitial; stability issue
M-D:	Ma	D:									Navan assumentialized
	MIN	BI					~	~			Never commercialized
MINAI(C)	IVIN	A					cu	C			Not successfully commercialized

- This list contains many (though not all) common magnetic materials and the elements used to make them.
- Take a good look and then let's move to the next slide showing them on the periodic table.

1	Group 1 IA 1.00794]			Elem	nents	use	d in l	Exist	ting I	Magr	netic	Mate	erials	5			1 VII 2 H
	Hydrogen 1s1 +1,-1	2 IIA											13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	Heli
3	6.941 Li	4 9.01218 Be	Phas Gas	e at STP Liquid	Solid	Synthetic							5 10.811 B	6 12.0107 C	7 14.0067 N	8 11.9994 O	9 18.9904 F	- 10 N
	Lithium [He] 2s1	Beryllium [He] 2s2	Cate	gories Alkali Metals dise Earth Metals		Noble Gas							Boron	Carbon	Nitrogen VA *123454123	Oxygen	Fluorine	Ne
1	1 22.9898 Na	12 24.30 Ma	Tr Ra	ansition Metals re Earth Metals		Non-metals Metalloids							13 26.9819 AI	14 28.0895 Si	15 30.9736 P	16 32.063 S	17 30.403 CI	18 A
	Sodium [Ne] 3s1	Magnesium [Ne] 352 +2	3 B	4 IVB	5 VB	6 VIB	7 VIIB	8 VIII	9 VIII	10 VIII	11 IB	12 IIB	Aluminum	Silicon	Phosphorus VA +3.5/3	Sulfur VIA +4.6/2	Chlorine YIU +1.5.7/1	Arg
1	9 39.0963 K Potassium [Ar] 451 +1	20 40.075 Ca Calcium (Ar) 442 +2	21 44.9995 Sc Scandium [Ar] 3d1 452 43	22 47.85 Ti Titanium [kr] 3d2 4s2 +2.3.4	7 23 50.9415 V Vanadium [Ar] 343 452 +2 3.4 5	24 91.9961 Cr Chromium [Rr] 3d5 4s1 +2.3.5	25 94.338 Mn Manganese [Ar] 345 452 +2 3.47	26 99.849 Fe Iron [Ar] 346 452 +2 3	27 50.9332 CO Cobalt [Ar] 347 462 +2.3	28 98.6834 Ni Nickel [Ar] 348 452 +2.3	29 63.946 Cu Copper [Ar] 3d10 4e1 +1.2	30 63.469 Zn Zinc [Jtr] 3d10.4s2	31 69.723 Ga Gallium [Ar] 3d10 4s2 4p1 +3	32 72.64 Ge Gemanium [Ar] 3d10 4c2 4c2 +2.4	83 74.9216 As Arsenic 2413 3d10 4s2 4p3 +3.573	34 78.96 Selenium [Ar] 3410 442 464 +4 642	35 79.904 Br Bromine [Ar] 3d10 4s2 4p5 +1.5/1	36 Kryp [Ar] Satto
3	7 \$3.4676 Rb Rubidium [Kr] 5s1 +1	38 \$7.60 Sr Strontium [Kr] 552 +2	2 39 88.9055 Y Yttrium [Kr] 4/1 552 +3	40 91.224 Zr Zirconium [Kr] 442 5s2 +4	41 32.3064 Nb Niobium [Kr] 444.551 +3,5	42 \$9.94 Mo Molybdenum (Kr) 445 551 +6	43 \$6 Tc Technetium [Ki] 415 552 +4,7	44 101.07 Ru Ruthenium (Kr) 447 551 +3	45 102.900 Rh Rhodium [Kr] 448 5s1 +3	46 106.42 Pd Palladium (1G) 4410 +2,4	47 107.888 Ag Silver (Kr) 4410 5±1 +1	48 112.411 Cd Cadmium [Kr] 4410 552 +2	49 114.816 In Indium [Kr] 4410 552 Sp1 +8	50 118.71 Sn Tin [Kr] 4410 552 592 +2,4	61 121.76 Sb Antimony (Kr) 4410 552 5p3 +8,5/3	52 127.6 Te Tellurium [Nr] 4410 552 5p4 +4,8/2	53 126.904 lodine Kr] 4d10 5s2 5p5 +1,5,7/1	54 Xen [Kr] 4410 0
	5 132,905 CS Cesium [Xe] 651 +1	56 137.32 Ba Barium [Xe] 652 +2	Lanthanide Series	72 178.45 Hf Hafnium (Xe) 4114 5d2 6s2 +4	9 73 188.948 Ta Tantalum [Xe] 4714 543 682 +5	74 183.84 W Tungsten [Xe] 4#14 5d4 6s2 +6	75 188.207 Re Rhenium (Xe) 4114 5d5 6s2 +4,67	76 198.23 Os Osmium [Xe] 414 566 562 +3,4	77 192.217 IT Iridium (Xe) 4114 5d7 6s2 +3,4	78 193.076 Platinum [X9] 414 543 651 +2,4	79 196.367 Au Gold [Xe] 414 5410 651 +1,3	80 200.49 Hg Mercury [Xe] 4114 5d10 6s2 +1,2	81 204.363 TI Thallium (Hg) 6p1 +1,3	82 - 207.2 Pb Lead (Hg) 692 +2,4	83 206.96 Bi Bismuth [Hg] 6p3 +3,5	84 209 Polonium [Hg] 6p4 +2,4	85 210 At Astatine [Hg] 6p5 0	186 Rac [H9]
8	7 223 Fr Francium (Rn) 781 +1	88 22 Ra Radium [Ro] 782 +2	Actinide Series	104 28 Rf Rutherfordium IVB +4	1 105 262 Db Dubnium V8 0	106 266 Sg Seaborgium MB 0	107 264 Bh Bohrium VIB 0	Hassium VIB 0	109 26 Mt Heitnerium VIIB 0	110 201 Ds Darmstadtium VIIB 0	N11 272 Roentgenium B	Copernicium	113 nts Uut Ununtrium IIX 0	114 209 Uuq Ununquadium	115 n/s Uup Ununpentium	116 292 Uuh Ununhexium Viii	117 nta Uus Ununseptium	118 Ununo
		Lanthanides	57 138.900 La Lanthanum [Xe] 541 6s2 +3	5 58 140.110 Ce Cerium [Xe] 411 541 652 +3,4	59 140.906 Pr Praseodymium [Xe] 43 692 +3	60 144.24 Nd Neodymium [Xie] 474 6s2 +3	61 143 Pm Promethium [X0] 45 602 +3	62 190.36 Sm Samarium [Xe] 45 612 +2,3	63 191.964 Eu Europium [X0] 47 602 +2,3	64 197.25 Gd 6adolinium [X6] 47 5d1 6s2 +3	65 158.525 Tb Terbium [X0] 43 652 +3	66 162.5 Dy Dysprosium [Xe] 4110 6s2 +3	67 164.93 Ho Holmium [Xe] 4111 6e2 +3	68 167.299 Er Erbium [X0] 412 692 +3	69 168.934 Tm Thulium [Xe] 413 682 +3	70 173.04 Yb Ytterbium [X0] 414 692 +2,3	71 174.967 Lu Lutetium [X0] 4714 541 652 +3	1
		Actinides	89 223 Ac Actinium (Rn) 6d1 7s2	7 90 232.03 Th Thorium [Pn] 842 782	Protactinium	92 230.029 U Uranium	93 237 Np Neptunium	94 244 Pu Plutonium	95 243 Am Americium	Cm Curium	97 247 Bk Berkelium	98 291 Cf Californium	99 232 Es Einsteinium	100 297 Fm Fermium	101 238 Mcl Mendelevium	102 299 No Nobelium	103 262 Lr Lawrencium	

- They are, with three exceptions, the same elements we selected by narrowing the total list of elements.
- The exceptions:
 - Platinum-cobalt was the first high performance magnet. It was used to make watch drive motor magnets whose very small size compensated for the high material cost. It is still made today but in very limited quantities.
 - Germanium and Tin have not been used, at least to my knowledge, in commercial magnets except as trace constituents, but like aluminum and gallium might make suitable modifying constituents to assist sintering or phase formation.
- If we are to make a new magnet material, it is likely to come from combinations of these elements.

- The Slater-Pauling curve of energy plotted versus number of valence (3d+4s) electrons teaches us that the highest Ms (saturation magnetization) materials are likely to be constituted largely of iron and cobalt no surprise there.
- Any compositional additions, such as to create or enhance coercivity, are likely to reduce the Ms and energy product.
- Note that this chart shows only 2-component alloys.

- In addition to the importance of structure in current research is the importance of thermal processing in the development of optimal microstructure.
- With the exception of ceramic (hard ferrite) magnets, magnetic alloys are just that alloys.
- Therefore, thermal treatments to form the stable and desirable phase structure are very common.
- In the chart at the left, Karl Strnat teaches regarding the development of the hysteresis loop of SmCo 2:17 during its thermal treatment.
- In the chart to the right, we see the improvement of magnet properties of alnico 5 due to thermal processing in the presence of an aligning magnetic field.

- In another example related to alnico, the material is solution treated at high temperature (about 1250 °C) followed by a conditioning treatment effected by controlled cooling from the solution treatment temperature or by isothermal treatment of the magnets anisotropic magnets are treated in a field during spinodal decomposition at ~820 °C.
- The third and final treatment is called a "draw" or "coercive aging treatment" to obtain maximum coercivity and optimal loop shape.
- We might say that the right composition provides the opportunity and the right thermal treatment creates the right phase structure.
- As with SmCo 2:17, extending the draw time improves the coercivity structural kinetics are slow at these low temperatures.

- Every commercially available magnet material since alnico is manufactured by powder metallurgical techniques.
- This includes ferrite permanent magnets, SmCo 1:5, SmCo 2:17, Neo, and SmFeN.
- Except for SmFeN, the materials can be processed into fully consolidated structures via liquid phase sintering or hot deformation (die upsetting).
- The list in this chart shows some of the more common methods for densifying powder into a usable shape.

HIP = hot isostatic pressing SPS = Spark Plasma Sintering

- Shape of a cold compaction curve is dependent upon at least the following:
 - ✓ Rate of pressure application
 - ✓ Powder particle size and distribution
 - ✓ Material hardness
 - ✓ Brittleness (or malleability)
 - ✓ Included defects (from mechanical working)
- Near full density requires extreme shear and is not possible in cold compaction except with a limited number of "super-plastic" alloys.
- In powder metallurgy, cold compaction is usually followed by a thermal treatment to densify the "green" compact.
- The densifying thermal treatment is called solid or liquid phase sintering

- Randall German wrote two texts on the subject of powder metallurgy. The reference shown here is highly recommended.
- These illustrations reinforce those on the previous slide but go further to show that the material, ductile and deformable at the start of compaction, work hardens and resists continuous compaction through deformation.
- The only ways to continue compaction are to anneal to remove the work hardening or to apply adequate pressure to cause brittle fracture.
- Consolidation to full density will most likely require both pressure and temperature.
- Minimal grain growth requires that the pressure be maximized and temperature minimized.

- Relief on dysprosium shortages does not require a wholesale replacement of neo magnets. It does mean using multiple methods of reducing demand for dysprosium including:
 - ✓ Selective positioning of dysprosium in the structure to minimize content
 - ✓ Reducing temperature of applications so less dysprosium is required
 - \checkmark Use of alternate high temperature magnet materials such as SmCo or alnico
 - ✓ Modified designs to reduce demagnetizing stress or provide operation at high permeance coefficient
- New materials will likely use the same elements that have been used for 150+ years. Therefore these new materials will likely depend upon:
 - ✓ A refined structure, perhaps built-up atoms at a time
 - ✓ Sophisticated thermal processing
- The greatest challenges we face with nano-structured material are:
 - ✓ They are more likely to be formed as nano-particulates requiring consolidation with alignment of domains
 - ✓ They are chemically reactive and potentially hazardous during processing thus requiring or benefiting from totally enclosed processing
- In the event that a nano-particulate cannot be fully densified, it must be made adequately passivated for inclusion in a bonding medium such as plastic or metal to form a bonded magnet

